
TestManager CE
Software Development Environment

for test sequences and test

TestManager Classic Edition

Test sequencer including a
development environment for test procedures.

Content

3

MCD Elektronik TestManager CE • Software Development Environment
for test sequences and test
First Edition, for TestManager, version 1.5.1.46

The information in this book is published without regard to a possible patent
protection. No guarantee against general use of brand names. Texts and images
were carried out with extreme care in the compilation. Nevertheless errors cannot
be excluded completely. Editors and authors can neither be held legally respon-
sible nor accept any liability for incorrect information. The editor is grateful for
suggestions and information about errors.
E-Mail: info(at)mcd-elektronik.de

All rights reserved, including photomechanical reproduction and storage in elect-
ronic media. The industrial use of this book‘s models and work is not allowed.

Microsoft Windows, Excel and Explorer are registered trademarks of Microsoft
Corporation.
MCD is a registered trademark of the MCD Elektronik GmbH.
Other product and company names are sometimes registered trademarks of their
respective companies.

© 2013 by MCD Elektronik GmbH
Hoheneichstr. 52 • 75217 Birkenfeld • Germany
www.mcd-elektronik.com
All Rights Reserved
Printed in Germany

4

Content

Content

Introduction ..7
MCD TestManager CE Software	 7
The Basic Idea of the Book	 7

1. Introduction..9
Download TestManager CE...9

Installation..9

First Application..11
The Development Environment	 11

■■Exercise 1-1..12
	 Start an Existing Test Process	 12

Test Window...14

2. Step by Step to Your Own Testing Process...........17
Family Type...17

■■Exercise 2-1..17
	 Creating a New Family Type	 17

Variant Type..19
■■Exercise 2-2..19

	 Managing Variants	 19

Test Sequence...21
Sequence List	 22
Sequence Steps	 22
Test Steps	 23

■■Exercise 2-3..24
	 Creating a Test Sequence	 24

Interpreter..26
Interpreter Editor	 27

Content

5

Interpreter Assistance	 28
Debugger	 28

■■Exercise 2-4..28
	 Editing Interpreter Steps	 28

3. Screen Objects...33
■■Exercise 3-1..33

	 Screen Objects	 33

4. Global Variables...37
Converting Data Types..37

Programming Made Easy...37
■■Exercise 4-1..38

	 Gambling	 38

5. Tools..45
■■Exercise 5-1..45

	 Using Tools	 45

6. Files...49
■■Exercise 6-1..49

	 Writing and Reading Files	 49

■■Exercise 6-2..53
	 Writing, Reading, Renaming of Files and Getting to know the Date Time 	
	 Funktions	 53

INI File...60
■■Exercise 6-3..61

	 Create, Read and Write INI Files	 61

7. Hardware Access..67
License Request	 67

Serial Interface...67

6

Content

■■Exercise 7-1..67
	 Using Serial Interfaces	 67

8. Data..73
■■Exercise 8-1..73

	 Dealing with Measurement Data	 73

9. Reports..77
■■Exercise 9-1..77

	 Creating Your Own Reports	 77

10. DLL..85
■■Exercise 10-1...85

	 Dealing with DLLs	 85

11. TestManager ME Measurement Card Support...91
The Development Environment TestManager ME	 91

Appendix...93
System Requirements	 93
Useful Web Links for TestManager Users	 94

Introduction

7

Introduction

Have you ever worked in a software development environment, or with „Classic“ pro-
gramming languages like Visual Basic, C #, C++ or any other C-variant?
Then you should be familiar with important fundamental concepts of programming
languages, such as data types, loops or syntax. If you have not had any experience with
programming and seem completely alien to the basic concepts, you will still find it
moderately easy to create test sequences with the MCD TestManager.

MCD TestManager CE Software

The MCD TestManager provides a test sequencer including a development environment
for test procedures. The environment allows you to create and manage family types and
their variants, which can then be used for the audit process. The TestManager provides
a wide range of possibilities, for example the connection to different hardware com-
ponents. Common bus systems, such as LIN, CAN, TCP / IP and IIC- bus are also
supported and a variety of tools and configuration options are offered to the user.

The Basic Idea of the Book

This book serves to facilitate the entry into the MCD TestManager development envi-
ronment. The help of exercises improves access to the functions and ways to facilitate
the TestManager CE. It cannot however be regarded as a general reference guide or a
handbook. The focus of the book is its exercises that are closely aligned with practice.
They are chosen so that the read information can be directly implemented and that the
user obtains useful tips and further information.

As already mentioned, this book is not a general reference. It is more of a tutorial guide
that covers the scope and simplicity of the topics at hand. However, should questions or
problems arise, see Appendix, for further detailed sources of information.

1. Introduction

9

Download TestManager CE

To use the book and perform the exercises eff ectively, you can download
the MCD TestManager CE from the Internet. Th e software can be obtained
on our website at www.mcd-elektronik.de/tmce.html.
Download the  trial version of TestManager.

Installation

Once the download is complete, you will fi nd a zip folder with the name Setup.zip whe-
re your downloads are stored. Th is contains the SetupTestManagerCE.exe that must be
executed. When the installation window appears, fi rst choose the preferred language and
confi rm with the  OK button.

Figure 1-1

Language Settings

To confi rm that you want to install the TestManager CE, click on Next.

Figure 1-2

Installation

Important information about the system requirements and how to deal with the pro-
gram will appear in the following window. Read the text carefully and
then confi rm with  Next.

1. Introduction

10

1. Introduction

Figure 1-3

Information about the Program

Th e next step will be prompted to select the directory under which the program will be
installed. Confi rm or  change the default path with Select and then confi rm with
Next.

Figure 1-4

Select Directory

To install the TestManager CE select  Install. Once installation is completed,
select Finish.

Figure 1-5

Completion of Setup

Th e MCD TestManager CE is now installed on your system and can be executed. A
shortcut is also created on your desktop (TestCollection.TestManager CE), through
which you can start the TestManager.

1. Introduction

11

First application

Double click on the link of the TestManager CE to start. Depending on the operating
system there may be a message that states that the program needs to be restarted. Should
this occur, close the program and restart it. Th is program is a demo version, and will
often prompt an info box that can be confi rmed by OK.
It also off ers the  Order now option to order a full version of TestManager.

The development environment

Figure 1-3

Program Window

Figure 1-3 shows the program window of the IDE. Here, you can access your settings,
tools, functions and much more. You can also receive more information and examples
to these settings, features, tools, etc.

Th e main area is used for the display of test results, when this option is activated. Alter-
natively, this area could be used to retrieve information during the inspection process.
Th e main menu is integrated in the menu bar. Th is gains access to all functions, as long
as they are enabled in the setup. Th e menu bar contains the following tabs (see Appen-
dix - Important TMCE menus): Type selection, Values, Setup, Edit, Start, Tools, Info,
Intern, Help and Exit.

12

1. Introduction

The toolbar contains buttons for calling up important features without having to go
through the menu. The number and layout of the buttons can be edited and customized
to fit the needs of the user.
The toolbar contains the following default buttons: Start, Type Selection, Setup,
Type Edit, Edit Test, Edit IP, Password, Reset, and End.

Information about the system is found in the info bar. You can also hide individual
elements in this bar. It contains the status lights that reflect the system‘s current status.
A clock and information about the currently selected language can also be found in this
bar.

Tip:
In the general settings, the icon and info bar can be customized according to the prefe-
rences of its user.

The status bar contains information about which mode is currently selected, the
license of the software, the user and the system.

■■ Exercise 1-1
	 Start an existing test process

Objective:
•	 Familiarization of test sequences
•	 Structure of test sequences
•	 Usage of TestManager

Step by step:
1.	 Log on as administrator
	 Navigate from the toolbar  Password. Press the  F4 function key or select 	
	 Administrator and type in admin as the password. Confirm the password by 	
	 pressing Enter or the  OK button.

Note:
Users in the TestManager can be divided into five password levels. Behind the various
password levels, different permissions are stored. These can be edited by going to the
menu bar  Intern  Access Levels.

2.	 Selection of family type 0MATH:
	 Navigate from the  toolbar  Typeselect to open the type selection window. 	
	 Open the tree structure of the family type 0MATH by double 		
	 clicking on the family name or the sign  +. Use the same approach to select

1. Introduction

13

  Code: 01 VariantMath, the Family type, and then select sequence  1.
 Confi rm your choice with the  OK button.

 SBS and Automatic Mode:
 During normal operation, the system is set to automatic mode. Here, the test
 is carried out precisely according to the specifi ed test sequence. Th rough the
 individual outcomes of the test-steps, one result is examined so that it could rate
 the specimen. Th e SBS mode (Step-by-Step) gives the user the capabilities to
 process and edit the sequence step by step. Th e mode is provided for the devel
 oper, the test procedures or the Debugging. During a test step, information can
 be given and the source code can be edited.

3. Manually start the test sequences:
 Th e test sequence can be started by  toolbar  Start (up) or alternatively via
 the ‘arrow up’ key on the keyboard. During single step mode (step-by-step, SBS)
 the system stops after every test sequence and allows the operator to select the
 next test step arbitrarily. Switching steps can take place either before the start of
 the test and during the test.

4. Repeat test step:
 If the system is in SBS (Step-by-step) mode, the individual test steps can be
 repeated. Th is can be done via the  Repeat button located at the bottom of the
 window.

Figure 1-4

Repeat Test Step

14

1. Introduction

	 What is the procedure?
	 In this sequence, a random number is initially generated. Figure 1-4 shows

	 the step that was repeated three times. The first time, the random number
	 generated 	was 0, the second time 1.2, and the third time 0.4. A randomly 	
	 selected sign is also chosen for these random numbers. The random number 	
	 is now used as an exponent to base 10 and the result is then calculated. Example 	
	 from the picture: 10(to the power of) -0,4 = 0.398107170553497.
	 Now, in order to obtain the randomly generated number, the mathematical
	 operation is reversed. The logarithm base 10 is calculated from the result. From 	
	 this calculation, the prior generated random number of (-0.4) is retrieved. Now 	
	 the sine of the random number is calculated (-0.38941 ...) and this operation 	
	 is again reversed in order to calculate the arc sine of the result. Here, the
	 randomly generated number retrieved should be displayed as the measured value 	
	 in the measurement value window.

5.	 Selecting the next steps:
	 The next step can be initiated by selecting the  Step+ button.

	 The testing process is completed after only one step, since the test sequence 	
	 only includes one step. After selecting the next steps with the Step + button, the 	
	 test sequence is completed and the system returns to the main window.

Test Window

Once a trial starts, the normal program window switches to the test window.
The areas in the above right display the step-info and debug-info, the current contact
position and the DUT overview being tested for the current contact position. If the
DUT has only one contact position, the contact position indication will be hidden.

1. Introduction

15

Figure 1-5

Test Window

Th e output range can be switched back and forth between test sequence output, the
display of the executed test steps and the Debug display. SBS test steps can be controlled
by the button panel, and depending on the password level, parameters of the steps can
be edited as well. Test steps can be cancelled, forwarded (step +), switched back (step-)
and repeated via the button panel. Th e sequence mode can be changed (from SBS to
automatic and vice versa) via the Mode button. Th is can also be done during the course
of testing. Th e interpreter editor (test step source code) and editor of the parameters
(parameter data for test steps) can be called upon.
Additional tools and information can be customized with the Debugger and the
Tools buttons. Process steps can be repeated, for example, verifying measurement results
by performing test steps again. Th rough the error-detect setting, the user has the oppor-
tunity to infl uence the behavior of the test steps in case of failure
Th e Step- and Debug info-window provides an overview of details to the steps, upper
and lower limits, test time and the current test period.

2. Own testing process

17

2. Step by step for own testing process

After gaining initial experience with the test manager, the next question is:
How is a test sequence created?
This question will be answered by step by step illustrations with specific examples.
The test sequence from Exercise 1-1 still has pretty little to do with measuring and
testing technology, but is quite easy to understand because it concerns mathematical
equations. This process merely scratches the surface of measurement technology and
is initially set up to help you understand the build-up, the structure, and the elements
involved in the testing process.

Family Type

The program allows testing of various DUT types. Each DUT type to test requires its
own set of data: process of the tests, extent of tests, thresholds, test steps, etc. This set of
data is known as the family type. Each family type consists of one or more variants. The
family type is the umbrella term of the data records. Variants (variant types) with similar
characteristics are subcategorized together under this ‘umbrella’. One possible example
would be a DUT that is available in different variants (variant types), for example, a car
radio (12V) or a truck radio (24V). These can be managed under the same family type.

■■ Exercise 2-1
	 Creating a New Family Type

To begin your testing process, first you have to create your own family type. In this exer-
cise, you can derive the existing 0MATH family type. When you find 0MATH, there is
a function that allows you to derivate or copy the existing family type. The system then
creates a new family type, and gives the option of editing the name and the content
included from the family of origin. That way, the 0MATH family type and its content
remains unchanged and is preserved for further use.

Step by step:
1.	 Log on as administrator
	 Navigate from the  toolbar Password. Press the F4 function key or 	
	 select Administrator and type in admin as the password. Confirm the password 	
	 by pressing Enter or the OK button

2.	 Open the Edit Types and Variants window via the  toolbar  Type Edit.

18

2. Own testing process

3. Select the family type 0MATH in the window and select the button in the
  toolbar  Derivate family type from existing family.

4. Assign a new name (example: 1MATH) and confi rm
 this with the OK button.

Figure 2-1

Derive family type

Tip:
Th e name of the type family is used for creating fi les and directories. Here is where the
test receives its title.

5. Change the Type Code (e.g.: 01 Math), since two variants with the same name
 are not allowed. Th e Type Information fi eld can also be change (example: ran
 dom number), but this is not mandatory.

 Bild 2-2

Type List

2. Own testing process

19

6.	 Save the Type List
	  toolbar  Save Type List

Family types of the currently used window (Figure 2.2) can also be created, renamed
and deleted.
To create a new family type, select one of the given samples in the Edit Types and Vari-
ants window and from the  toolbar  select create new type of family. As a result, a
new family type with no content is created.
Select the Rename family type button in the toolbar in order to rename the already
existent family. The family types listed in the left portion of the window can be deleted
by selecting the delete whole family type with variants.
To save changes, go to toolbar  Type List  Save Type List.

Variant Type

A variant type is a clearly identifiable type of DUT. The data within a variant type
determines the exact testing process that is supposed to be carried out by the TestMana-
ger system. In case there are two DUT’s whose types of examination differ, there is an
option to split them up and define them as two different variant types

Note:
You can manage similar DUT’s from the given selection of variants. The minor diffe-
rences can then be chosen and categorized under the filtered variants.

■■ Exercise 2-2
	 Management of Variants

To establish your own sequence, create a new variant to the already derived family type
(1MATH) from Exercise 2-1.

Step by step:
1.	 Log on as administrator
	 Navigate from the  toolbar  Password. Press the F4 function key or select 	
	 Administrator and type in admin as the password. Confirm the password by 	
	 pressing Enter or the OK button

2.	 Create variants:
	 Variants can be created in the Edit Types and Variants window by going to the
	 toolbar  Type Edit.

20

2. Own testing process

3. Select a family type in the left panel where a new variant type was created (from
 Exercise 2.1: 1MATH) toolbar  Create New Variant

Figure 2-3

Create Variants

4.  Edit Type code (e.g.:02 Math),  Type Information (e.g.: comparison) and
 activate the variant type with a checkmark by clicking on the empty box
 below Active.

Figure 2-4

Activate Variants

5. Save type list to accept changes  toolbar  Save Type List.

2. Own testing process

21

Other functions that are available in variants are ‘copy’ and ‘rename’. In order to copy a
variant, select a given variant in the left window and choose the function  toolbar
copy variant. Th e same instructions apply when wanting to delete a variant. Select
the variant in the left window and choose the function  toolbar  delete variant.
Now a test sequence contains its own family type with two variants.

Test procedure

Tests run according to a set sequence. Th e test sequence editor in the main window
can be selected from the  toolbar Test Edit or by going through the  main
menu Edit  Test Sequence Edit. When opening the test sequence editor, the data
of the currently loaded family type will be displayed and made available for editing. If
the data of another family needs to be edited, select a variant by clicking on the ‘Type
Select’ button in the toolbar or select the family type in the test sequence editor.

Figure 2-5

Test Sequence Editor

Th e window of the test sequence editor consists of the menu bar, the toolbar, and the
actual processing fi eld. If several processes are loaded simultaneously, then the test
sequence editor sets a tab for each sequence in between which they can be switched. Th e
tab for each family consists of the activation bar with the selection fi elds for the variant,
the process, and the system number, as well as the sequence list, the parameter inspector
and test step list.

22

2. Own testing process

Important:
When editing the sequence list or the test steps, note that the changes will aff ect all
variants in the family type, since all these variants share data. Th is is normally advanta-
geous since the modifi cation is relative to all the variants, and must only be made once.
However, unintentional changes could cause another variant to be changed.

Th e sequence list and the test step list have an unlimited undo function. Edits can be
done and undone up until the last save.

Sequence List

Th e sequence list determines which steps are executed in a test and in what order. More
so, the sequence list can include more than one test sequence and test procedure of
more than one variant type. Th e steps in the sequence list that are to be included in the
actual test procedure depend on several fi lters. Th ese fi lters are as follows: Type-code
of the variant type, sequence number, and system number. A line of the sequence list
can contain a comment, a Type code fi lter, a sequence step or an error. Comments are
ignored by the program and could be used to describe the procedures to be used.
A type code fi lter activates or deactivates subsequent sequence steps. Th ey serve
as a criterion for selection, in other words, which variants are included in which
sequence steps. Included type code fi lters begin with an (*) and are labeled with a plus
sign in the fi rst column. Excluded type code fi lters begin with a (^) and are marked with
a minus sign.

Ablaufschritte

A test sequence consists of numerous sequence steps.

Figure 2-6

Sequence steps

Th e determined activity of the sequence step is specifi ed in the fi rst column. Th e
system number is used for fi ltering and determines on which system the step should be
executed. It must match the system number specifi ed in the general setting. Th e system
number „0“ is used for steps in all running systems.

2. Own testing process

23

Th e sequence number allows multiple testing procedures to be stored in one sequence
list. Th e uploading of the sequence is determined by the sequence number stored in
the sequence list. Included in the testing process are only those steps that have numbers
identical to those in the type list or whose sequence number is 0.
Th e test step number links the sequence list to the actual test steps. If the test step is
loaded into the test sequence, then the data of each test step is uploaded and the test
step is carried out to its corresponding point.
Th e jump type determines if and when, after running a test step, the test sequence can
exit and a jump can be executed.

Sprungarten:
N Never Never jump, Details for target will be ignored
P Pass Jump is good
F Fail Jump is bad or invalid
A Always Always jump, result irrelevant
C Calculated Interpreter step calculates if a jump had occurred

A test step number is assigned to the jump target. Th e jump type and the jump target
are separated by a hyphen and displayed in one column in the sequence list
(example: ‚P - 1000‘).

Test steps

How a particular action is performed is defi ned in the test steps. Th e steps can be used
multiple times in a sequence. A test step consists of several fi elds, and their test step
number creates a link or a shortcut to the sequence list.

Figure 2-7

Test steps

Fields of test step parameters:
StepNr: Establishes a connection to the sequence list

StepArt: Name of the interpreter step

Name/Surname: Description of the test step
(German/Englisch)

Unit: Unit of measurement value

NCP: Number of decimal places

24

2. Own testing process

Upper/
lower limit: Boundaries in which the measured value moves

MDE: Measurement data collection (on/off)

FRepeat: Number of repetitions of the test step for errors

Frecover: Debugging, error handling

FContinue: Determines whether the case will continue in the error
 checking

Name parameter x/
Value parameter x: Free usable pair of parameter name and value that is passed
 on to the interpreter step.

 ■ Exercise 2-3
 Creating a test sequence

Th is exercise is to develop a testing procedure for the family type 1MATH (from
Exercise 1-1 to 3). Th is should make it possible for the two variants 01 MATH and 02
MATH to obtain diff erent sequences.

Step by step:
1. Log on as administrator
 Navigate from the toolbar> Password. Press the F4 function key or select
 Administrator and type in >admin as the password. Confi rm the password by
 pressing Enter or the OK button

2. Navigate using the  toolbar  Type select  and select the sequence of the
 family type 1MATH.

3. In order to adapt the sequence navigate using the  toolbar  Test edit
  Editor for test sequence. Add a new test step by selecting the sequence list then
 navigating to the  toolbar  New test step.

Figure 2-8

New test step

4. Once the new step appears, assign it as 2  in the StepNo column. Drag the test
 step in the sequence list and hold the left mouse button to place where desired.

2. Own testing process

25

Figure 2-9

Step 2

 Th e + above the fi rst test step symbolizes an included variant fi lter; the * stands
 for all types. Th is row should always be listed at the top of the sequence list.

5. Now, through the help of the variant fi lter the sequence list has to be adjusted so
 that step number 1 is only called upon in the variant 01MATH and step number
 2 is only called upon in variant 02MATH. To add new variant fi lters select
 the sequence list in the  toolbar  New variant fi lter. Th is fi lter should be
 assigned as (excluded) and is done by inserting  ^02MATH in the row beneath
 the + symbol.

Figure 2-10

New variant fi lter

 Now all the steps listed under the fi lter for variant 01Math are active.

6. Step number 2 should only be active for the variant type 02MATH. It is possible
 to use another excluded fi lter.

Tip:
For family types with several variants due to better readability
on to use inclusive (includierende) fi lter and the variations in the fi lter
to count for the following steps should be active.

 Insert and then place the container on Variantenfi  symbol list  New Varian
 tenfi older. Edit the fi lter with  * 02 Math

Figure 2-11

Variant fi lter placement

26

2. Own testing process

7. Now add a new test step to the test sequence list. Highlight this sequence list
 via the toolbar and then choose  New test step.

 Edit the fi elds of the new test step:
 StepNr  2
 StepType  IP_Comparison
 Name  Vergleich
 Name  Comparison
 Act.  Yes
 Upper limit  4
 Lower limit  0

Bild 2-12

Test para-

meters

8. Accept the changes by navigating to the toolbar Save all. Close editor for
 test sequence.

Interpreter

Th e interpreter (IP) executes interpreter steps (text fi les) that can be created and edited
by the user. As mentioned in the beginning of the book, the Interpreter language is
similar to PASCAL and BASIC. Included are procedures functions and libraries. Th e
data types used are essentially real and string types.

How it works:

Procedure:
A group of related source codes is known as a procedure. Th is allows repetitive tasks
to be edited in an eff ective, reusable way. Th is procedure can then be used repeatedly.
Procedures do not deliver results or return value.

Functions:
A function is a programming concept similar to the procedure, which delivers returns.
Existing functions can be used repeatedly.

Libraries:
A library is basically presents a collection of functions and procedures. If a library is
included in a source code, the programmer has access to its functions and procedures.

2. Own testing process

27

Otherwise, the programmer is forced to edit the required functions / procedures
himself.

Real data types:
The real data type is used for all numeric values (floating point numbers, whole num-
bers, logical and binary values).

String:
The string is used for strings.

Vector:
In the vector, a data type is implemented, the one-dimensional array of real numbers
represents. An array is a composite of several objects, data type, to
its various elements can be accessed.

String vector:
Provides a one-dimensional array of strings

ComObject:
The ComObject is a „pseudo-data type“ to define a ComObject (ActiveX Object).

NetObjects:
NetObjects is a pseudo-type data to integrate .NET classes in C #, VBB
or Java.

Interpreter Editor

The interpreter editor is accessed from the  toolbar  IP Edit  or via the
menu bar  Edit  Interpreter steps edit. The interpreter editor is used to enter the
source code manually.

Figure 2-13

Interpreter Editor

28

2. Own testing process

nterpreter assistance

The interpreter assistance can be called upon via the function key  F1. If you require
help for a function or procedure of a specific command, you can select the term and
press CTRL + F1. This key combination will jump directly to that command if it is
contained in the Help folder.

Debugger

The test manager has a debugger for the interpreter, which allows the source code to
work through instructions or blocks. The debugger also provides access to data (variab-
les and parameters) and allows it to be edited.

■■ Exercise 2-4
	 Editing Interpreter Step

This exercise introduces the programming language and is therefore kept very simple.
You are now only an exercise away from your first own test run. The only thing lacking
is the editing of an interpreter step (IP-Step). In case you have questions about the
source or the syntax during this exercise, you can consult the advice of the interpreter
assistance.

The first own test sequence should generate a random number between 0 and 9. Fur-
thermore, it should be examined whether this random number is larger or smaller than
4 and then a response will take place accordingly.

Der erste eigene Prüfablauf soll eine Zufallszahl zwischen 0 und 9 generieren. Weiter
soll geprüft werden, ob diese Zufallszahl größer oder kleiner als 4 ist und entsprechend
soll eine Ausgabe erfolgen.

Step by step:
1.	 Log on as administrator
	 Navigate from the toolbar Password. Press the F4 function key or select 	
	 Administrator and type in admin as the password. Confirm the password by 	
	 pressing enter or the OK button.

2.	 Navigate using the  toolbar  Type select  and select the sequence of the 	
	 variant 02MATH.

3.	 Open the interpreter editor via  toolbar  IP Edit and select in the interpreter 	
	 editor window via the toolbar  a Blank Page document.

2. Own testing process

29

Figure 2-14

Edit IP

 Save the step on the  menu bar  Interpreter step  Save as. Th e name of
 the interpreter step must be the same as it was specifi ed in the sequence schedule:
  IP_Comparison. Enter the name and  Save.

4. Defi ning a variable:
 Variables are defi ned before the actual step and fundamentally have the following
 structure:

 Syntax: IP_COMPARISON.IPS

var
 //Variables are defi ned here

step
 //Actual source code is edited here

end. //The source code ends here

 Realize the structure in your blank document and defi ne a variable following the
 syntax:

 A variable consists of an identifi er and a type. Th e identifi er defi nes the
 name of the variable.

 Syntax:

Identifi er : type;

30

2. Own testing process

	 In your case the source code would be entered as follows:

var
 Random Number : Real;

step

end.

	 You have now defined a variable with the name ‘random number’. Through this 	
	 name, you have access to the contents of the type ‚real‘ in the source code at
	 anytime.

5.	 Generate a random number:
	 To generate a random number use the following function:

Math.random (rRange: real) : real;

	 The name of the function is ‚Math.Random‘ and the value of type ‚real‘, which 	
	 defines the range of random number, must be entered in brackets. The area 	
	 should be defined from 0 to 9. The second indication of ‚real‘ gives the type the 	
	 return value that the function supplies. This random number should be transfer	
	 red to the variable. Assignments will be implemented as follows:

	 For example:

Variable := value;

 	
	 or in our case:

Variable := function ();

	
	 Source code: 				 IP_ COMPARISON.IPS

var
 Random Number : Real;

step
 Random Number = Math.random (9);
end.

	 f you feel the need to include any additional information in the source code for 	
	 traceability purposes, it can be realized through comments. Comments are prece	
	 ded by / / and cannot be translated by the compiler.	

2. Own testing process

31

	 Source Code:

/ / This is a comment!

6.	 Random number comparison:
	 A comparison can be implemented by a so-called If-Then command (If-Then-	
	 Else). The ‚If‘ sends a logical command that the interpreter responds to. After 	
	 ‚Then‘ a code is to be executed if the logical command delivers a ‚true‘
	 response, while ‘Else’ is the code for when the response is a ‘fail’. It should be 	
	 examined whether the random number is greater than, less than or equal to 4 and 	
	 the result should then be sent to the debug window.

	 Compound instructions are formed together from a sequence of instructions and 	
	 are then carried out in the order they were placed.
	 The partial information contained in the compound instructions is included by 	
	 the words ‚begin‘ and ‚end‘.

	 Source: 		 IP_ COMPARISON.IPS
var
 Random Number : Real;

step				
 Random Number = Math.random (9);
								
 If random number> 4 Then begin
	 Debug.Show(0, ‘random =’ random number);
	 Debug.Show(0, ‘random number is greater than 4’);
 end
 Else begin
	 Debug.Show(0, ‘random =’ random number);
	 Debug.Show(0, ‘random number is less than or equal to 4’);
 end;
end.

Tip:
If you want to know what the ‘Debug.show’ function does and how it is entered, then
select the function and press CTRL + F1 (for Help).
	
7.	 In this step, the random number in the test sequence window should be dis	
	 played. In addition, a short time delay should be inserted.

32

2. Own testing process

 Source: IP_ COMPARISON.IPS

var
 Random Number : Real;

step
//***************Generating a random number********************
 Random Number := Math.Random (9);
//***

//***************Query of size with issue:****************
 If random number > 4 Then begin
 Debug.Show(0,'random = ',random number);
 Debug.Show(0,'random number is greater than 4');
 end
 else begin
 Debug.Show(0,'random = ',random number);
 Debug.Show(0,'random number is greater than 4');
 end;
//***

 SetValue(random number); //Random number returned as a
 DateTime.Delay(2000); //measurement value
 //Time delay of 2 sec
 Repeat //This loop will continue re
 peatedly
 until StepContinue; //until the
 //StepContinue-event occurs
end.

8. Save and close the interpreter step and start the process.

Bild 2-15

Ablauf starten

 Due of the limits, a ‘Fail’ is indicated by the test sequence because of the fact that
 a random number greater than 4 was generated.

3. Screen objects

33

Screen displays are initialized via the so-called screen objects. This category includes
buttons, bitmaps, curves, dialogues, editing (input fields) frames, labels, meter, etc. ..
Such objects can be initialized using the following syntax:

Screen.Objektname, example:

Screen.Dialog	

These objects have procedures that enable them, for example, to activate, conceal,
indicate, etc..

Example: 	

Screen.Dialog.Show

More information on the syntax can be found via the help of the interpreter.

Before using the screen objects, all objects must be hidden and reset to default value. If
you want to present objects, you must first open and show a user-definable window. The
following Syntax must be edited prior to use of screen objects:

Screen.ClrScr; //Hide objects and reset to default values
Screen.Show;	 //Open and view user definable window

■■ Exercise 3-1
	 Screen-Objekte

This exercise is aimed at dealing with screen objects. Creating a process in which two
buttons are displayed on the test window, is the objective of this exercise. These are la-
beled as ‚Pass‘ and ‚Fail‘. With the help of these buttons, the test results may be affected
as follows: When pressing the button reveals a pass, then the test results passed. When it
reveals a ‚fail‘, the test results should be adjusted so that ‘fail’ applies.

Step by step:
1.	 Log on as administrator
	 Navigate from the  toolbar  Password. Press the F4 function key or select 	
	 Administrator and type in >admin as the password. Confirm the password by 	
	 pressing enter or the OK button.

3. Screen objects

34

3. Screen objects

  weiter geht´s auf der nächsten Seite

2. Create a new family type with the name  8MONITOR and a variant  01
 Button. Set it to ‘active’ and enter a name for the Type information
 (for example: 2 Button).

3. Select the variant of step 2 in the toolbar TypeSelect.

4. Edit a step in the process and test sequence parameter list. In order to be able
 to use a new interpreter step, type in a new name in the IP File column (example:
 IP_Button). Apply the upper and lower limits at a certain value, in order to infl u
 ence the test results

Figure 3-1

Screen objects

5. Edit interpreter step:
 Edit your source code by defi ning a variable that can give you the value of
 the last pressed buttons and then initiate the monitor. Defi ne yourself in a
 ‘repeat until’ loop of the two buttons and retrieve the information of which
 button was pressed. Th e loop can only then be abandoned when one of the
 buttons has been activated.
 Depending on the button, customize the measured value of the process
 (‚Pass‘ or ‚Fail‘) in order to infl uence the result.

 Source code: IP_BUTTON.IPS

var
 Button : Real;
step
//*****************Initialisierung Screen:**********************
 Screen.SetTab(1);
 Screen.ClrScr;
 Screen.Show;
//***

3. Screen objects

35

 //*********Loop to repeat with value adjustment:*******
 repeat
 Screen.Button.Show(1, 100, 100, 'Pass', 100, 1, 24);
 Screen.Button.Show(2, 300, 100, 'Fail', 100, 1, 24);

 Button := Screen.LastButton;

 If Button = 1 Then
 begin
	 SetValue(1);
 end;

 If Button = 2 Then
 begin
	 SetValue(100);
 end;

 GlobalVar.Set ('gButton', Button);

 until Button > 0;
//***

 repeat
		
 DateTime.Delay(300);

 until StepContinue;

 Screen.ClrScr;
end.

	 		 						

	 The loop repeat...until StepContinue is allowed in the Step by Step – mode,
	 so that the source code of the loop is repeated until the jump command to the 	
	 next step (via the Step + button) takes place.

4. Global variables

37

4. Global variables

Variables that are defined and initialized in a step are lost at the end of the step. Howe-
ver, it is necessary in many cases that variables and their values of one or more steps be
retained until the end of the sequence. Global variables have this property. Your life goes
beyond the Step out and end up can be defined to the system end.
These global variables can be defined by the procedure  GlobalVar.Set and retrieved
by the function  GlobalVar.Get. They must also have a clear identifier, like normal
variables.
Variables, values and comments can be viewed and edited via the  menu bar  Tools
Global Data.

Converting data types

The test manager provides functions to convert data types. These are necessary (for
example) so that return values from functions that are in a fixed data type can be con-
verted. The Val function converts the text from strings into a real data type (a numerical
value). It is also possible to convert a real value to a string via the Str function.

Programming made easy

It is recommended that when editing Interpreter steps, the variant for which the
Interpreter step is edited, should be selected and carried out in the SBS-mode. If an
IP-Step is not already created with the appropriate name, the interpreter editor will
be opened by a pathway where the IP step is located in. The source code can be edited
directly in this window. When the editor is closed the code is directly executed. In the
case of an error, the programmer displays it directly in the editor. The error line in the
interpreter editor is displayed in red and the status bar displays the error code
description.
It is possible that the error is already in the source code, this is for example the case
when using an undefined variable. The error can be solved instantly that way and the
improved source code can be rerun. That way, the accuracy of the code and the behavior
of the program can be reviewed. The source code can be edited and verified
by programmer-friendly steps.

38

4. Global variables

Note:
Another peculiarity of the interpreter is that some errors are first detected at run-time.
The syntax in the editor is checked as 'OK'. In an actual start of the test step, the func-
tions are in fact executed and type similarity is controlled.

During the exercises you will be given step by step functions and procedures that you
have probably not been confronted by before. Should the syntax or the effects of its
commands be unclear, see the Interpreter help for advice. This should be your standard
operating procedure as it enables you to learn how to operate the TestManager and
create interpreter steps independently.

■■ Exercise 4-1
	 Gambling

In this exercise, a new sequence (Gambling) is created. This will consist of 3 test steps
with 4 user-entered digits (0-9) compared with 4 program-generated random numbers.
The result is expressed as a percentage and will reflect the similarities of the numbers.

The names of the test steps are:
• Entry of Numbers
• Random
• Compare

Mit den zugehörigen Interpreterschritten:
• IP_Entry
• IP_Random
• IP_Compare

Step by step:
1.	 Log on as administrator
	 Navigate from the  toolbar  Password. Press the F4 function key or select 	
	 Administrator and type in admin as the password. Confirm the password by 	
	 pressing enter or the OK button.

2.	 Insert a new family type with the name  7GAMBLING with the variant> 01 	
	 Random number, and set this to  active and save.

3.	 Edit the test procedure with the above-mentioned three steps and define me	
	 aningful measurement limits. Note that the result should be displayed as a
	 percentage.

4. Global variables

39

Figure 4-1

Sequence List

Figure 4-2

Test Step List

4. Choose the variant listed in step 2 via ‘Typeselect’ or for shortcut press (F2)

5. Editing the fi rst interpreter step:
 Defi ne the variables of the real-type, by allocating and assigning the numbers
 that the user entered. Another real-type variable will function as a counter and
 must therefore also be defi ned.

6. Assign an initial value to the counter (0 is off ered) and initialize the screen.

7. Create an entry window on the test step display window and activate it.

8. Edit a ‘repeat until’ loop that, with the help of the counter, repeats itself so often
 until the value reaches an initial value of + 4. Th e purpose of this loop is that its
 content is repeated until the counter reaches its fi nal value. Inside the loop, the
 four user-numbers are read and passed on to the variable.

9. By using the help of an If-Th en instruction, ask whether or not a valid character
 was entered into the input fi eld during the ‘repeat until’ loop. If this is the case,
 the display button can be confi rmed and activated.

10. Defi ne another If-Th en assignment inside the loop in order to check if a button
 is activated. During this assignment, you can use the counter as a selector, with
 the help of a case instruction, in order to assign each number to the variables.
 Th en, reactivate the input fi eld and empty it. Th e button will be hidden again. It
 is important that you increment the counter.

11. Defi ne the numbers entered as global variables and set the measurement value.

40

4. Global variables

Source code: 	 IP_ENTRY.IPS

var
 Number1	 : Real;
 Number2	 : Real;
 Number3	 : Real;
 Number4	 : Real;
 Counter	 : Real;

step
//*****************Screen initialize:***********************
 Screen.SetTab(1); //focus on Prüfschrittausgabe
 Screen.ClrScr;
 Screen.Show;
//***

//*********create and activate an entry window:************
 Screen.Edit.Setup (1, 1, '0..9', 0); //input window
 Screen.Edit.Show (1, 100, 100, 50);
 Screen.Edit.Activate (1);
//***

//*******************Set counter to 0:**********************
 Counter := 0;
//***

 repeat //repeat until counter is 4!

 Screen.Label.Show (1, 100, 30, ''Please enter a number:');

 If Screen.Edit.GetText(1) <> '' Then //Query whether
					 character 		
				 	 was entered
 begin
	 Screen.Button.Show(1, 200, 100, 'Ok', 100, 1, 24);
	 Screen.Button.Activate (1);
 end;

 If Screen.LastButton =1 Then //If the button
				 is clicked:
 begin

//**********Selection according to counter reading:************
	 Case counter Of
	 0 : number1 := Val (Screen.Edit.GetText(1),100);
 	 1 : number2 := Val (Screen.Edit.GetText(1),100);
	 2 : Number3 := Val (Screen.Edit.GetText(1),100);
 	 3 : Number4 := Val (Screen.Edit.GetText(1),100);
	 end;
//***

//*************Increment counter and hide button:*********
	 Screen.Edit.Activate (1);
	 Screen.Edit.SetText (1, '');
	 Screen.Button.Hide (1);
	 Zaehler := Counter + 1;

  continue to the next page

4. Global variables

41

//***
 end;

 until (counter = 4);

//**************Label and hide input field:***************
 Screen.Label.Hide (1);
 Screen.Edit.Hide(1);
//***

//*****************Define Global Variables:****************
 GlobalVar.Set ('gnumber1', number1);//Save figures in
				 global variables
 GlobalVar.Set ('gnumber2', number2);
 GlobalVar.Set ('gnumber3', number3);
 GlobalVar.Set ('gnumber4', number4);
//***
 SetValue(1); //set measurement value

 repeat
 until StepContinue;

 Screen.ClrScr; //Clear screen
end.

	

12.	 IP_Random edit:
	 Generate 4 random numbers and store them in the Global Variables.

	 Source code: 	 IP_RANDOM.IPS

var
 Random Number 1 : Real;
 Random Number 2 : Real;
 Random Number 3 : Real;
 Random Number 4 : Real;			
step
//****************Zufallszahlen generieren:*********************
 Random Number 1 := Math.Random (10);
 Random Number 2 := Math.Random (10);
 Random Number 3 := Math.Random (10);
 Random Number 4 := Math.Random (10);
//***

//***************Globale Variablen setzen:**********************
 GlobalVar.Set ('gRandom Number 1', Random Number 1);
 GlobalVar.Set ('gRandom Number 2', Random Number 2);
 GlobalVar.Set ('gRandom Number 3', Random Number 3);
 GlobalVar.Set ('gRandom Number 4', Random Number 4);
//***

 SetValue (1);

  continue to the next page

42

4. Global variables

 repeat
 until StepContinue;
end.

	

Tip:
Be careful when naming global and normal variables so that no misunderstandings
occur and the syntax is understandable.

13.	 Edit IP_Comparison:
	 With the help of If-Then instructions, check whether there is consensus between 	
	 the inserted numbers and the random numbers. If necessary, adjust the result 	
	 accordingly within the instructions. Enter the numbers for the user on the test 	
	 step display window.

	 Source code: 	 IP_Comparison.IPS
var
 Result : Real;

step
 Result := 0;

//**********Compare figures and adjust results:**********
 If GlobalVar.Get ('gnumber1') = GlobalVar.Get
 ('gRandom Number1'1') 	
 Then
 begin
	 Ergebnis := Ergebnis + 25;
 end;
							
 If GlobalVar.Get ('gZahl2') = GlobalVar.Get ('gZufallszahl2')	
 Then
 begin
	 Ergebnis := Ergebnis + 25;
 end;

 If GlobalVar.Get ('gZahl3') = GlobalVar.Get ('gZufallszahl3')	
 Then
 begin
	 Ergebnis := Ergebnis + 25;
 end;

 If GlobalVar.Get ('gZahl4') = GlobalVar.Get ('gZufallszahl4')	
 Then
 begin
	 Ergebnis := Ergebnis + 25;
 end;
//***
	 Screen.SetTab (1);
	 Screen.ClrScr;
	 Screen.Show;

  continue to the next page

4. Global variables

43

//*****************Issue of numbers :**************************
 Screen.Label.Show (1, 100, 30, ''Your Numbers:');
 Screen.Label.Show (2, 100, 60, str (GlobalVar.Get
 ('gNumber')));
 Screen.Label.Show (3, 100, 90, str (GlobalVar.Get
 ('gNumber2')));
 Screen.Label.Show (4, 100, 120, str (GlobalVar.Get
 ('gNumber3')));
 Screen.Label.Show (5, 100, 150, str (GlobalVar.Get
 ('gNumber4')));

 Screen.Label.Show (6, 250, 30, 'random numbers':');
 Screen.Label.Show (7, 250, 60, str (GlobalVar.Get
 ('gRandom number'1')));
 Screen.Label.Show (8, 250, 90, str (GlobalVar.Get
 ('gRandom number2')));
 Screen.Label.Show (9, 250, 120, str (GlobalVar.Get
 ('gRandom number3')));
 Screen.Label.Show (10, 250, 150, str (GlobalVar.Get
 ('gRandom number4')));
//***

 Screen.SetTab (1);
 SetValue (result);

 repeat
 DateTime.Delay (2000);

 until StepContinue;

 Screen.ClrScr;
end.

14. Save your edited data and restart the process.

Figure 4-3

Enter numbers

44

4. Global variables

Bild 4-4

Comparison

5. Tools

45

As mentioned in the beginning of the book, TestManager contains a variety of functions
and tools. By navigating to the  menu bar Tools you can invoke the activated tools
in the basic settings. Th ese tools enable the user to obtain information and carry out
settings and can also be used outside of the sequences.
Under the tools menu, you will fi nd various monitors, such as CAN-, LIN- and
IC-monitors and various ME-(Meilhaus) monitors. Signals are sent and received with
these monitors. Setting possibilities of all kinds are also possible. Th ese tools can also be
called upon during sequences via the function  Action.Trigger.

 ■ Exercise 5-1
 Using Tools

Th is exercise deals with the application of tools. As an example, this exercise will
illustrate how a curve monitor is used. Data for three curves should be passed on to the
monitor. Th e mathematical functions sine, cosine and sine*cosine should be the result
displayed on the curve monitor.

Step by step:
1. Log on as administrator
 Navigate from the toolbar  Password. Press the F4 function key or select
 Administrator and type in >admin as the password. Confi rm the password by
 pressing enter or the OK button.

2. Insert a new family type with the name  9CURVEMONITOR with the
 variant  01 SineCosine, and set this variant to  active and save.

3. Select the created family type via  Typeselect.

4. Test procedure:
 Edit a test sequence with a test step  IP_SINUS, defi ne upper and lower limits
 and set the step to active.

Figure 5-1

Test Sequence List

5. Tools

46

5. Tools

Bild 5-2

Test-Step Parameter

5. Interpreter step:
 Set up three variables of type Vector. Th ese vectors serve as the function values
 of sine, cosine and sine*cosine. Furthermore, one variable, which should be of
 real-type, is needed for counting. Th is should enable the function values in single
 cells of the vector to be written (similar to the known ‘data-type array’).

6. Before the cells of the vectors are described, it should be ensured that all cells
 have no content. Th at way these vectors have a ‚length‘ of 0. Th is happens
 through the syntax:
 Example: Curve1: = [];

7. Create a loop that enables you to describe the cells of the vector individually.
 For this purpose, a For-To-Do loop is available, that enables the vectors to be
 described with a variety of values. Make sure that one cell of the vector is ‚
 Switched on‘ after each cycle.

 Source code: IP_SINUS.IPS

For Counter := 1 To 1000 Step 1 Do begin
 Curve := Curve + [(Math.Sin(counter / 100))];
end;

 [(Math.Sin (counter / 100))] describes the current cell with the
 sine value from the counter / 100. Th e brackets [] represent the
 beginning and the end of the cell. With the syntax Curve1:= Curve1
 + []; the vector is overwritten by itself and an additional (new)
 cell []. Th e length of the vector is thus increased by one
 element.

 Repeat this approach of steps 6 and 7 for the cosine and
 sine*cosine variants.

8. Settings of the curve monitor:
 Th e axes of the curve monitor can be named with the procedure  Curve.Scale.
 SetText. Th e axis name for the Volt of the Y-axis and measuring points for the
 x-axis are available. You can insert the curve names into the curve monitor with
 the procedure  Curve.Name and confi gure the monitor via  Curve.Setup.

5. Tools

47

9.	 View of the curves:
	 The curves can be stated in the curve monitor with the help of the
	 function Action.Trigger. For this purpose, the  Action-Code of the curve
	 monitor (2020) is needed. Set the measurement value according to the value 	
	 which you defined.

	 Quellcode:	 IP_SINUS.IPS

var
 Curve1 : Vector;
 Curve2 : Vector;
 Curve3 : Vector;
 Counter : Real;

step

//***************Fill vectors with values:*********************
 Curve1 :=[];
 For Counter := 1 To 1000 Step 1 Do begin
	 Curve1 := Curve1 + [(Math.Sin(counter / 100))];
 end;

 Curve2 :=[];
 For counter := 1 To 1000 Step 1 Do begin
	 Curve2 := Curve2 + [Math.Cos (counter / 100)];
 end;

 Curve3 :=[];
 For counter := 1 To 1000 Step 1 Do begin
	 Curve3 := Curve3 + ([Math.Sin (counter / 100)*Math.Cos
	 	 (counter / 100)]);
 end;
//***

//***********Axis labels and graph names define:****************
 Curve.Scale.SetText (1, 1, 'volts');
 Curve.Scale.SetText (1, 0, 'data points');

 Curve.Name(1, 'curve 1', 'curve 2','curve 3');
//***

//***************Edition of the curves:************************
 Curve.Setup (1, 1000, curve1, curve2, curve3);
 Action.Trigger (2020);
//***
						
 SetValue (1);

 repeat
 until StepContinue;

end.

	

48

5. Tools

Bild 5-3

Output of Curve Monitor

6. Files

49

The TestManager provides the ability to create, access, and edit files. Different functions
and procedures can be called upon, for example, the reading and writing in files. To
activate these functions the following syntax must be used:

 File.(Function or procedure)

Important for the functions and procedures for files is to note whether or not the file
should be opened or closed for execution. For example, a file must be opened before it
is read or edited.

■■ Exercise 6-1
	 Reading and Writing Files

This exercise focuses on reading and writing files. This sequence should have a user-
entered text placed into a text document (Ending.txt) and then read out again. The text
should be displayed in the test step display window.

Step by step:
1.	 Log on as administrator Navigate from the  toolbar  Password. Press the F4
	 function key or select Administrator and type in >admin

2.	 Create a new family type with a variant and set it to active.
	
	 Example: Family Type Name: 	11PRACTICE9
		 Code Type:	 01Txt file
		 Information Type:	 Read and Write
	
	 Save the edited data.

3.	 Choose the variant of the new family type in step 2 via  Typeselect.

4.	 Edit the sequence list and the test step parameter via  Test Edit. One step is 	
	 required for the sequence. Choose a name for the Step Type
	 (example: IP_TXTFILE) and define the upper and lower limits,
	 then save your data.

6. Files

50

6. Files

Figure 6-1

Sequence List

Figure 6-2
Test Step Parameter

5. Start the sequence and edit the interpreter step. Use an input box, and for
 confi rmation of the input, a button which allows the entered text in a variable to
 be passed. Save the text into a variable.

6. With the procedure  File.SetFileName () a fi le can be created. Name the fi le
  ‚Practice9.txt‘ and then open the fi le with the help of the
 procedure  File.Open ().

 Syntax:

File.SetFileName (1, 'Übung9.txt');

File.Open (1);

7. Write the text in the fi le with the help of your created variables.

 Syntax:

File.Write (1, Variable);

8. In order to read the text, you have to position the fi le pointer back to the
 beginning of the fi le. Th e fi le pointer can be set at any location of the fi le via
 the procedure  File.Seek (). Th e content of the fi le can be read via
 the function  File. Read () and can be passed directly to a variable.
 After you have read the fi le, you should close it again via the
 command  File.Close ().

 Syntax:

File.Seek (1,0); //set fi le pointer to the beginning
 Content := File.Read (1, 'EOF',100);
 File.Close (1);

9. Enter the contents of the fi les in the test step display window and assign a lag
 period of approximately three seconds to allow the user to have time to register
 the output.

6. Files

51

10.	 Delete the file with  File.Delete and set the measured value within the
	 boundaries you have defined.

	 Syntax:

	 File.Delete (1); //Delete the file!!!

	 The file should be deleted so that no implications arise when other applications 	
	 and the input of shorter texts is applied

Tip:
Simply try it out, with and without deleting the file.

	 Source code:	 IP_TXTFILE.IPS

var
 Text : String;
 Contents: String;

step
//**********************Screen initialize:**********************
 Screen.SetTab (1);
 Screen.ClrScr;
 Screen.Show;
//**

//******************Generate output and input field:*********
 Screen.Label.Show (1, 30, 30, '’Please enter your text:');
 Screen.Edit.Setup (1, 100,'' ,0);
 Screen.Edit.Show (1, 30, 60, 400);
 Screen.Edit.Activate (1);
//**

//***********Repeat until button is pressed:********************
 repeat
	 If Screen.Edit.GetText(1) <> ‚' Then
	 begin
	 Screen.Button.Show (1, 480, 60, 'OK',70 ,1 , 24);
	 end;
 until Screen.LastButton =1;
//**

 //**************Write text in file:*****************************
 Text := Screen.Edit.GetText (1);

 File.SetFileName (1, 'Practice9.txt');
 File.Open (1);
 File.Write (1, text);

  continue to the next page

52

6. Files

 File.Seek (1,0); //set fi le pointer at the beginning
 Content := File.Read (1, 'EOF',100);
 File.Close (1);
//***

//******************Output:************************************
 Screen.Label.Show (2, 30, 200, 'Text aus File:');
 Screen.Label.Show (3, 30, 230, Inhalt);
//***

 DateTime.Delay (3000);

 repeat
 until StepContinue;

 File.Delete (1); //Delete the fi le!!!!
 SetValue (1);

end.

11. Save the interpreter step and restart the sequence in SBSModus. If you edited
 the deletion of the fi le after the ‚repeat until StepContinue‘ Loop, you can still
 see the text document after you have entered your text and confi rmed.
 Th is requires you to navigate to Windows Explorer into the  Directory where
 the TestManager was installed. Th e fi le is located in the folder  Data Type
 Type_ (family type name that you assigned). Th at way you can confi rm if the
 letter was successfully transferred into the fi le.

Figure 6-3

Read + Write

6. Files

53

Figure 6-4

Read + Write

 ■ Exercise 6-2
 Writing, reading, renaming of fi les and introduction of the date-time
 functions.

Th is exercise shows another example in dealing with fi les. Th e task will be to create a se-
quence in which the user will be prompted to enter a user name. Th is username should
be documented with the current date and time of entry.
In the second step, both the current user and previous user should be documented in a
second text and saved with the current date and time.
In the third step, the text document with the previous user should be overwritten by the
text documents with the current user. Th is can be realized the by renaming the fi les.

Step by step:
1. Log on as administrator
 Navigate from the toolbar Password. Press the F4 function key or select
 Administrator and type in admin

2. Create a new family type with a variant, set it to active, and save the edited data.

 Example: Family Type: 12PRACTICE10
 Code Type: 01File
 Information Type: txt fi le

3. Choose the variant of the new family type in step 2 via  Typeselect.

54

6. Files

4. Create three steps in the sequence list and test step parameter list. Use three new
 step types, defi ne names and limits for these steps, and save your data.

Figure 6-5

Sequence List

Figure 6-6
Test Step Para-
meters

5. Choose the variant of the new family type in step 3 via  Typeselect and begin
 the sequence.

6. Edit the fi rst interpreter step:
 Insert variables of type Real in order to save the date (year, month and day) and
 time (hours, minutes and seconds). A variable of type String is also required in
 order to deposit the user‘s name to.

7. Create an input fi eld in the test step display window and activate it. Call upon
 type label in this window to enter the username.

8. Place a button, with which an input can be confi rmed, as soon as a character has
 been entered.

9. Save the user name in the applied variables.

10. Read the current system time with the function  DateTime.Time (). With this
 function, the return value can be transferred directly to the specifi ed variables.

 Syntax:

DateTime.Time (hours, minutes, seconds);

 In this case, hours, minutes and seconds are the variables that the current time
 will be assigned to.

6. Files

55

11.	 11. The function  DateTime.Date () delivers the current system date and
	 transfers them to the variables (as in Step 9).

	 Syntax:

DateTime.Date (year, month, day);

12.	 Now open the saved text document in which the current user should be stored.

13.	 With help of the procedure  File.WriteLn () you can write information in the 	
	 text document line by line. With the help of this procedure write the user, the 	
	 date and the time each in one line.

	 Syntax:

File.WriteLn (1, 'User: ' + Anwender);

File.WriteLn (1, 'Date: ' + Str (Jahr) + '-' + Str (Monat) +
'-'+Str (Tag));
File.WriteLn (1, 'Time: '+Str(Stunden) + ':' + Str (Minuten) + 	
':' + Str (Sekunden));

14.	 Close the text document and set the measurement value.

	 Quellcode des ersten Interpreterschritts:	 IP_FILES.IPS

var
 User	 : String;
 Hours	 : Real;
 Minutes	 : Real;
 Seconds	 : Real;
 Year	 : Real;
 Month	 : Real;
 Day		 : Real;

step
//***************Initialize screen:*****’’’********************
 Screen.SetTab (1);
 Screen.ClrScr;
 Screen.Show;
//***

//************Issue the user request:**************************
 Screen.Edit.Setup (1, 20,'' ,0);
 Screen.Edit.Show (1, 200, 100, 150);
 Screen.Edit.Activate (1);
//***

//*************Benutzeraufforderung ausgeben:******************
 Screen.Label.Show (1, 20, 105, '’Enter user name:');

  continue to the next page

56

6. Files

//***

//************Repeat until button is pressed:***********
 repeat
	 If Screen.Edit.GetText(1) <> ‚“ Then
	 begin
	 Screen.Button.Show (1, 380, 100, 'OK',70 ,1 , 24);
	 end;
 until Screen.LastButton = 1;
//***

//**************Retrieve text, date and time:*******************
 User:= Screen.Edit.GetText (1);

 DateTime.Time (Hours, Minutes, Seconds);
 DateTime.Date (Year, Month, Day);
//***

//***************Write into File line by line*****************
 File.SetFileName (1, 'User_Current.txt’);
 File.Open (1);

 File.WriteLn (1, 'User: ' + User);
 File.WriteLn (1, 'Date: ' + Str (Year) + '-' + Str (Month) + 	
 '-' + Str (Day));
 File.WriteLn (1, 'Time: ' + Str (Hours) + ':' + Str
 (Minutes) + ':' + Str (Seconds));

 File.Close (1);

	
//***

 SetValue (1);

 repeat
 until StepContinue;

end.

15.	 Edit the second interpreter step:
	 Create three variables of type String, in order to be able to allocate
	 the read user data.

16.	 Open the text document of the current user and enter the data into the variables.

	 Syntax:

Userdaten1 := File.ReadLn (1);
Userdaten2 := File.ReadLn (1);
Userdaten3 := File.ReadLn (1);

6. Files

57

17.	 Close the document and enter the user data in the test step display window.

18.	 Open the document from the previous user, interpret the data line by line, and 	
	 place it in the variables provided.

19.	 Close the document and submit the data. Enter the measurement value and a 	
	 delay time of approximately 2-4 seconds to give the user time to read the given 	
	 results.

20.	 Clear the screen.

	 Source code of the second Interpreter step: 	 IP_GETUSER.IPS

var
 Userdata1 : String;
 Userdata2 : String;
 Userdata3 : String;

step
//******************File öffnen:********************************
 File.SetFileName (1, 'User_current.txt’);
 File.Open (1);
//***

//****************Read line by line:***************************
 Userdata1 := File.ReadLn (1);
 Userdata2 := File.ReadLn (1);
 Userdata3 := File.ReadLn (1);
//***

//******************Close file:*********************************
 File.Close (1);
//***

//******************Initialize screen:**********************
 Screen.SetTab (1);
 Screen.ClrScr;
 Screen.Show;
//***

//******************Output data:*******************************
 Screen.Label.Show (4, 100, 40, 'Current users:');
 Screen.Label.Show (1, 100, 70, Userdata1);
 Screen.Label.Show (2, 100, 100, Userdata2);
 Screen.Label.Show (3, 100, 130, Userdata3);
//***

//******************File Open:********************************
 File.SetFileName (1, 'User_before.txt');
 File.Open (1);
//***

	
  continue to the next page

58

6. Files

//***************Read line by line:**************************
 Userdaten1 := File.ReadLn (1);
 Userdaten2 := File.ReadLn (1);
 Userdaten3 := File.ReadLn (1); 	 	
//***

//******************Close file:*****************************
 File.Close (1);
//***

//******************Output data:*******************************
 Screen.Label.Show (5, 100, 180, 'previous user:');
 Screen.Label.Show (6, 100, 210, Userdata1);
 Screen.Label.Show (7, 100, 240, Userdata2);
 Screen.Label.Show (8, 100, 270, Userdata3);
//***

 SetValue (1);

 DateTime.Delay (2000);

 repeat
 until StepContinue;
 Screen.ClrScr;

end.

21.	 Edit the third interpreter step:
	 You can rename files with the procedure  File.Move (). Use the procedure 	
	 and change the name of the document of the current user to that of the previ	
	 ous user. Through this, the current user becomes the previous user at the end 	
	 of the sequence. When re-running the sequence, the file of the 		
	 current user is deleted and recreated. That way, the current user and the previous 	
	 user is stored.

	 Syntax:

File.Move ('C:\...\TypeData\TYPE_12PRACTICE10\User_current.
txt', 'C:\...\User_before.txt', True);

	 The procedure requires the specification of paths to rename the files.

22.	 Enter the measuring value and a delay time of about one second.

6. Files

59

 Source code for the third interpreter step: IP_FILE2.IPS

var

step

//******************Rename File:****************************
 File.Move ('C:\TestCollection\Testing\TestManager CE\TypeD-
ata\TYPE_12PRACTICE10\User_current.txt', 'C:\TestCollection\
Testing\TestManager CE\TypeData\TYPE_12PRACTICE10\User_before.
txt', True);
//***
 SetValue (1);

 DateTime.Delay (1000);

 repeat
 until StepContinue;

end.

23. Save your interpreter steps and start the sequence.

Figure 6-7

Starting a Sequence- Step 1

60

6. Files

Figure 6-8

Starting a Sequence -

Step 2

INI-File

Th e TestManager also supports access and the editing of INI fi les. Th ese fi les are initi-
alization fi les that are, for example, used for storing program settings. INI fi les can be
interpreted, interpreted section by section, described, deleted, and deleted by sections
by the TestManager. Functions and procedures are available for this purpose.

An INI fi le consists of the components section, the elements and the values. Th ese so-
called sections represent an umbrella term under which items can be stored with their
values.

Example INI fi le structure:
[Section1]
Item1 = Value1
Item2 = Value2

[Sektion2]
Item1 = Value1
Item2 = Value2

Item1 in Section1 and Item 2 in Section 2, and their values can coincidentally be iden-
tical but are to be treated fundamentally diff erent.

6. Files

61

 ■ Exercise 6-3
 Create read and write INI fi les

Th is exercise deals with INI fi les and should give you a better understanding of how to
deal with them. Th e task at hand is to edit a sequence, which consists of two steps. In
the fi rst step, an INI fi le will be opened or created. In this fi le, three randomly generated
numbers (length, width and height) should be written in the ‘dimensions’ section. From
these generated numbers, the volume should be calculated and stored in the ‘calculated
values’ section. Th e reading and the output data from the INI fi le should be realized in
the second step.

Step by step:
1. Log on as administrator
 Navigate from the toolbar> Password. Press the F4 function key or select
 Administrator and type in >admin

2. Create a new family type with a variant, set it to active, and save the edited data.

 Example: Family Type: 13PRACTICE11
 Code Type: INIFile
 Information Type: Writing and Reading

3. Choose the variant of the new family type in step 2 via Typeselect.

4. Add a new step to both the sequence list and the test step parameters and
 include two new step types. Defi ned the limits, activate these steps and save the
 edited data.

Figure 6-9

Test Sequence Editing

5. Select the variable created via Typeselect and start the sequence.

6. Edit the fi rst interpreter step:
 Create two variables of type String to store the section name and four type real
 variables in order to save the values.

62

6. Files

7.	 Open or create an INI file using the procedure  INIFile.SetFileName
	 (Path + Name.INI). It is available to choose a path that leads to the desktop of 	
	 the computer you are using or in the TestManager installation directory.

	 Syntax:

INIFile.SetFileName ('C:\...\TypeData\TYPE_13PRACTICE11\PRAC-
TICE11.INI');

Tip:
Please note that the path you use can differ from the one above.

8.	 Generate three random numbers with  Math.Random () function and assign 	
	 it to the intended variables.

9.	 Write section in the INI file:
	 Assign the variables for the section to the name  Dimensions. With help of the 	
	 procedure  INIFile.WriteReal (section, item, value), you can write a real value 	
	 for an item in the section.

	 Syntax:

Section1 := 'Dimensions';
INIFile.WriteReal (Section1, '1: length', value1);

10.	 Calculate the volume and pass the value to the variable provided here by you.

11.	 Assign the name of the second section of the proposed variables and write the 	
	 volume of this section in the INI file.

12.	 Set the measurement value within the limits defined by you.

	 Source code: 	 IP_INIFILE.IPS

	

var
 Section1	 : String;
 Section2	 : String;
 Value1	 : Real;
 Value2	 : Real;
 Value3	 : Real;
 Volume	 : Real;

step

  continue to the next page

6. Files

63

//******************Open or create IniFile:******************** 	
 INIFile.SetFileName ('C:\...\TypeData\TYPE_13PRACTICE11\ 	
 Practice11.INI');
//***

//*****************Generate random values:******************** 	
 Value1 := Math.Random (100);
 Value2 := Math.Random (100);
 Value3 := Math.Random (100);
//***

//*************Section1 in INIFile schreiben:*******************
 Section1 := 'Dimensions';

 INIFile.WriteReal (Section1, '1: length', value1);
 INIFile.WriteReal (Section1, '2: width', value2);
 INIFile.WriteReal (Section1, '3: Height', value3);
//***

//***************Calculated volume:*****************************
 Volume := value1 * value2 * value3;
//***
	
//*************Write volume in Section2:*******************
 Section2 := '’calculated values';	
						
 INIFile.WriteReal (Section2, '1: volume', volume);
//***
 repeat
 until StepContinue;

 SetValue (1);
end.

	
13.	 Edit the second interpreter step:
	 Define six variables of type String; two for the allocation of sections and four for 	
	 the item names.

14.	 Initialize the screen for the output of screen objects.

15.	 Open the INI file with the procedure INIFile.SetFileName.

16.	 Read sections:
	 Read the sections about the procedure  INIFile.Load () and set the internal 	
	 pointer with the order  INIFile.First on the first read-in section.
	 Now, the section name can be passed directly to the intended variable with the 	
	 function  INIFile.Name.

64

6. Files

	 Syntax:

INIFile.Load ('');
INIFile.First; //set pointer to the first section
Section1 := INIFile.Name;

	 To read the second section, you must have the internal pointer set on the next
	 element. This is done by  INIFile.Next. With the  INIFile.Name command, 	
	 the section name can be passed to the variable.

	 Syntax:

INIFile.Next; //set pointer to the next section
Section2 := INIFile.Name;

17.	 Items to read from the INI file:
	 Using the just-mentioned command  INIFile.Load (Section) the contents of 	
	 a section can be read. Should items now be interpreted from this section, then 	
	 the process will be similar to the interpretation of the other sections.
	 The internal pointer must be set on the first element of the Section. For this 	
	 purpose the procedure  INIFile.First is used again. You can now use the
	 function  INIFile.Name to pass the item name to a variable. The value of the 	
	 item can be read with  INIFile.Value. Should this be passed directly 		
	 to a real variable, then you must convert from string to a real using  Val (). You 	
	 can then move the internal pointer to the next element with  INIFile.Next.

	 Syntax:

INIFile.Load (Section1);
INIFile.First;
Variable1 := INIFile.Name;
Value1 := Val (INIFile.Value, 0);
INIFile.Next;

18.	 Proceed as done in the16th step to interpret the item from the second section.

	 Syntax:

INIFile.Load (Section2);
INIFile.First;
Compute-name := INIFile.Name;
Calculated value := Val (INIFile.Value, 0);

19.	 Enter the variables using the screen functions in the test step display window and 	
	 insert the measured value within your defined boundaries.

6. Files

65

	 Quellcode:	 IP_INIFILE2.IPS

var
 Section1		 : String;
 Section2		 : String;
 Variable1		 : String;
 Variable2		 : String;
 Variable3		 : String;
 Value1		 : Real;
 Value2		 : Real;
 Value3		 : Real;
 Calculated value	 : Real;
 Compute-name	 : String;

step
//*****************Initialize screen:***********************
 Screen.SetTab (1); //focus on Test step results
 Screen.ClrScr;
 Screen.Show;
//***

//***************Open or create the IniFiles:************
 INIFile.SetFileName ('C:\TestCollection\Testing\TestManager 	
 CE\TypeData\TYPE_13PRACTICE11\PRACTICE11.INI');
//***

//****************Section names are read out:*************
 INIFile.Load ('');
 INIFile.First;	 //set pointer on the first section
 Section1 := INIFile.Name;	 //read name of the entry, 	
 				 hat the pointer points to
 INIFile.Next;	 //set pointer on the next section
 Section2 := INIFile.Name;
//***

//**********Retrieve items and values from Section1 :**********
 INIFile.Load (Section1);
 INIFile.First;
 Variable1 := INIFile.Name;
 Value1 := Val (INIFile.Value, 0);
 INIFile.Next;
 Variable2 := INIFile.Name;
 Value2 := Val (INIFile.Value, 0);
 INIFile.Next;
 Variable3 := INIFile.Name;
 Value3 := Val (INIFile.Value, 0);
//***

//***********Retrieve items and values from Section2 :*********
 INIFile.Load (Section2);

  continue to the next page

66

6. Files

 INIFile.First;
 Compute-name := INIFile.Name;
 Calculated value := Val (INIFile.Value, 0);
//***

//*****************Ausgabe:************************************
 Screen.Label.Show (1, 100, 30, Section1);
 Screen.Label.Show (2, 250, 30, 'value');
 Screen.Label.Show (3, 100, 80, Variable1);
 Screen.Label.Show (4, 250, 80, Str (value1));
 Screen.Label.Show (5, 100, 110, Variable2);
 Screen.Label.Show (6, 250, 110, Str (value2));
 Screen.Label.Show (7, 100, 140, Variable3);
 Screen.Label.Show (8, 250, 140, Str (value3));
 Screen.Label.Show (9, 100, 200, Section2);
 Screen.Label.Show (10, 100, 230, Rcomputer name);
 Screen.Label.Show (11, 250, 230, Str (calculated value));
//***

 repeat
 until StepContinue;

 SetValue (1);
end.

20. Save your interpreter steps and restart the process.

Figure 6-10

Sequence start

 Contents of INI fi les:
 [DIMENSIONEN]
 1: LENGTH=33
 2: WIDTH=21
 3: HEIGHT=13
 [Calculated value]
 1: VOLUME=9009

7. Hardware Access

67

7. Hardware Access

A license is required to operate the program with access to all interfaces. To gain access
to hardware with the demo version, a short-term license can be requested.
A full version of TestManager can be obtained by requesting a license and the
receipt of a key.

License Request

Navigate via the  menu bar  Intern  License and  License Request to reach
the window where the licenses can be requested.

Serial interface

Th e module for the serial port is used to access all types of RS232 ports regardless of
what cards or hardware are realized in the PC. If the COM Port in the system admi-
nistration of Windows appears, it can be used by the program. Th e module provides
additional ports for additional modules (eg LIN) and adopts the administration of the
port parameters.

Th rough the Basic settings (Toolbar  Setup  Serial Ports), a serial port can be
created and confi gured.

 ■ Exercise 7-1
 Using Serial Interfaces

Please note that you can only perform this exercise if your computer has the required
COM port. For the implementation of the exercise, a plug, that you should be able
to make yourself, is necessary. Th is plug is a 9-pin Sub-D connector and needs to be
bridged according to the following circuit diagram:

Figure 7-1

Schematic 9-pin Sub-D socket

68

7. Hardware Access

Using Serial Port
Th is exercise aims at the usage of the serial interface. Th e task at hand is to request a
short-term license, create a new serial port in the basic settings and confi gure it. During
the sequence, a string should be sent and received via the serial interface. Th e inspec-
tion of the received strings should yield that the sent string corresponds to the received
string. If this is not the case, then the result of the process should be adjusted
accordingly.

Step by step:
1. Log on as administrator
 Navigate from the toolbar  Password. Press the F4 function key or select
 Administrator and type in >admin

2. Create a serial port:
 Navigate via the toolbar  Setup in the basic settings. Select  Serial Ports
 from the panel on the left side of the window. Create a new port
 with the help of the button

Figure 7-2

Create Serial Port 1

3. Enter a Name (example: SERIAL1) for the COM port and optionally add a
 comment. Set the port to  Active and set the  Baudrate to  9600.
 Confi rm your changes with the> OK button.

7. Hardware Access

69

Figure 7-3

Create Serial Port 2

4. Insert a new family type with a variant, set this to ‘active’ and save the data.

 Example: Family Type: 14SERIAL
 Code Type: Serial
 Information Type: Test

5. Select the variable created via Typeselect and start the sequence

6. In the test step parameters, add a new name for the step type and defi ne the
 limits. Set the step to ‘active’ and save.

Figure 7-4

Sequence List

Figure 7-5
Test Step
Parameters

7. Request a short-term license on the  menu bar  Intern  License.

8. Start the sequence in SBS mode and edit the interpreter step.

70

7. Hardware Access

9.	 Edit interpreter step:
	 Add two variables of type string, in order to store the sent and received data.

10.	 Using the help of the screen commands, initialize the monitor to display data in 	
	 the test step display window.

11.	 Assign the variable to send a string of your choice.

12.	 With the help of the function  RS232.Exists (‚Name of the interface‘) ask
	 whether the applied interface exists and enter the result on the test step display 	
	 window.

	 Syntax:

If RS232.Exists ('SERIAL1') = 1 Then
begin
 Screen.Label.Show (3, 100, 30, '’interface exists!');
end;

13.	 Open the applied interface with the command RS232.Open ().
	 Using  RS232.IsOpen () ask whether the port has been opened and state the 	
	 result as well.

	 Syntax:

RS232.Open ('SERIAL1');

If RS232.IsOpen ('SERIAL1') = 1 Then
begin
 Screen.Label.Show (4, 100, 60, 'Port is open!');
end;

14.	 Send the string stored in the variable using the command  RS232.Send () via 	
	 the applied serial interface.

	 Syntax:

RS232.Send ('SERIAL1', send);

15.	 With the help of function  RS232.Read (), send the data received via the inter	
	 face to the second variable.

	 Syntax:

Reception := RS232.Read ('SERIAL1');

16.	 State the sent and the received string and insert a lag time of about one second.

7. Hardware Access

71

17.	 Compare if the received string corresponds to the transmitted string and adjust 	
	 the measurement value accordingly. The sent string must correspond to the
	 received string due to the wiring of the socket.

	 Source code:	 IP_SERIELL.IPS

	

var
 Reception 	 : String;
 Send 	 : String;
Step

 Screen.SetTab (1); //focus on test step display
 Screen.ClrScr;
 Screen.Show;

//*****************Assign string:******************************
 Send := 'Hello';
//***

//*********Queries whether interface is configured:*************
 If RS232.Exists ('SERIAL1') = 1 Then
 begin
 Screen.Label.Show (3, 100, 30, '’interface is
 end;		 configured!’);
//***

//*****************Open interface :************************
 RS232.Open ('SERIELL1');

 If RS232.IsOpen ('SERIAL1') = 1 Then
 begin
	 Screen.Label.Show (4, 100, 60, 'Port is open’!');
 end;
//***

//*****************Send:*************************************
 RS232.Send ('SERIAL1', send);
//***

//*****************Receive:***********************************
 Reception := RS232.Read ('SERIAL1');
//***
//*****************Ausgabe:*************************************
 Screen.Label.Show (1, 100, 90, 'Sent: ' + send);
 Screen.Label.Show (2, 100, 120, 'Received: ' + reception);
 DateTime.Delay (1000);
//***
 repeat
 until StepContinue;

  continue to the next page

72

7. Hardware Access

//*****************Messwert setzen:*****************************
 If received = Send Then
 begin
 SetValue (1);
 end
 Else begin
 SetValue (0);
 end;
//***

end.

18. Save your interpreter step and start the sequence.

Bild 7-6

Serial Interface Test

Tip:
Should the result of the step fail repeatedly, then it could be that you are operating a
non-licensed system. Check if you have access to a license and if necessary request a
short-term license.

8. Measured data

73

8. Measured data

Each test step generates a set of data after execution. Generated are the real measured
value, the result of the step, and also a set of metadata. Th is, for example, refers to the
time of testing, the duration of the step, and the obtained data that is available in that
type of test step, e.g. the number of the test step, the unit, etc.
Th e standard way to store this data is in DBF format (dBase). Th is requires an installed
BDE (Borland Database Engine). Th e measurement data can be stored in standard
format or in a freely defi nable spreadsheet. To avoid large amounts of data a built-in
data maintenance is available.
Th e path, in which the data are stored in, is confi gurable. In type-related storage, a sub-
directory is created for each family type. All types of data are stored together by default.
Th ere is also the possibility to transfer the measurement data to a DLL.

 ■ Exercise 8-1
 Dealing with measurement data

Th is exercise will demonstrate the use of measurement data. It is intended to summarize
the measurement data in DBF format and realize the local storage.

Step by step:
1. Log on as administrator
 Navigate from the toolbar Password. Press the F4 function key or select
 Administrator and type in admin.

2. Activate the data logging in DBF format by navigating to the basic settings
  toolbar  Setup. In the left panel of the basic settings, select  Measured
 Data and open the content by selecting the  + box.

Figure 8-1

Data confi guration

74

8. Measured data

3. Select  Measure Data DBF and in the right fi eld under General  checkmark
 the box titled ‘Measure data DBF-Enable’.

Figure 8-2

DFB data release

 Th e measured values are thus stored in a DBF fi le under the installation directory
 folder MEASDATA. Alternatively, a network path can be specifi ed. Th e data is
 separated by type and stored locally only after the complete functionality test has
 taken place.

4. Open the menu to the setting ‘Data maintenance’ (subpart of measured data
 DBF in the left panel of the window). Set it to ‘Start when program starts’ under
 data maintenance.

8. Measured data

75

Figure 8-3

Setting Data Maintenance

5. Save the settings by clicking on the  OK button.

6. Choose the sequence of family type  2MEASUREDATA through
  Typeselect and start the sequence in Automatic mode.

7. Via Windows Explorer, navigate through the Installation Directory
 of the TestManager to the folder  MEASDATA. Th ere you will fi nd a folder
  TYPE_2MEASUREDATA that includes the DBF Files  FAILDATA
  MEASDATA  and PASSFAIL.

8. You can view the contents of DBF fi les using Microsoft Excel.

9. Reports

77

9. Reports

Measurements and results can be viewed, saved, and printed. To customize the printouts
according to the wanted user preference, the TestManager is equipped with a powerful
report generator. With its help, the printouts can be designed freely. It can refer back
to draft and edit them as well. Measurement values can be retrieved, managed, and
printed via the  menu bar  Values  Measured Values. Th rough the use of reports,
common ‚templates‘ can be created so that you do not have to write a new report for
every sequence.

 ■ Exercise 9-1
 Creating Your Own Reports

Th e objective of this exercise is to create your own report, in which the measured values
for the already-existing 2MEASUREDATA sequence can be printed and stored. Th is
way, the design will be customized individually.

Step by step:
1. Überprüfen Sie Ihren Passwortlevel, sollten Sie nicht als Administrator beim
 System angemeldet sein, ändern Sie dies.

2. Request a short-term license, in case your software is not licensed.

3. Choose via  Typeselect the sequence of family type  2MEASUREDATA and
 start the sequence in automatic mode.

4. After completion of the sequence, navigate to the  menu bar  Values
  Measured Values to indicate the current measured values of the last test
 process..

Figure 9-1

Measu-

rement

Values

5. Activate the button  Report to open the administration window.

78

9. Reports

Figure 9-2

Report Management

6. Select the existing report AllDUTs.frf and confi rm your choice with the button
  Edit to customize the report to your own preferences.

Figure 9-3

Designer Example

7. To edit an empty report, please navigate to  toolbar  New report

8. Now create your own title report, by going to  toolbar  Insert band

9. Reports

79

Figure 9-4

Creating a Report Title

9. Select  Report title from the window and confirm with the button  OK.

Figure 9-5

Select Report Title

10. Select a place in the report, where you want to insert your title report.

11. Via the  toolbar  Insert rectangle objects, rectangular fi elds can be inserting
 in the report. Place one of these fi elds in your report title.

80

9. Reports

12. A text editor window can be opened to allow you to enter a text in the box or
 have the system transfer variables over.

Figure 9-6

TextEditor

13. In the upper box, type a suitable name for your report, and confi rm your entry.
 Drag it to the desired location and edit the desired font size.

14. Depending on your preference, you can set up a color, frame, or something
 similar to your fi eld via the  toolbar.

Figure 9-7

Designer Example

15. To display variables like the current date on the report, place another text box.
 Navigate via  toolbar of the text editor window  to the insert data
 field in left field

9. Reports

81

  vdsDutList and  TestTime_T in the right.

Figure 9-8

Designer Example

 Th is approach can retrieve any of the variables of the system and must not edit
 each sequence by hand.

16. Th is way, you can add more variables such as Family Type, Code Type, test time,
 etc. to your report title.

 Several variables can be used in one fi eld; this can serve as an advantage for page
 numbers:

 [PAGE#] of [TOTAL PAGES]

 Th is way, the current page number of the total number of pages can be displayed.

17. Insert a new band and for the type select  Page header. Use this command
 to add a header to your report. Right-clicking on the header can set if
 this is to be used on the fi rst page. In this case it is not necessary.
 Create a header according to your preferences.

82

9. Reports

Figure 9-9

Example

18. Create another band from type  Master data. Set a source code correlating to
 the data. To do this, double-click on the band:

Figure 9-10

New Band

19. Choose  frDSDutList and confi rm with  OK.

20. Realize the displayed module number, serial number, result, mode, duration and
 measurement values from the table of information. Th e used data can be found in
 the division  vdsDutList.

9. Reports

83

	 Module number 	  [vdsDutList.“Module number“]
	 Serial number 	  [vdsDutList.“SerialNumber“]
	 Result 		  [vdsDutList.“TestResult_T“]
	 Mode		  [vdsDutList.“SBSFlag_T“]
	 Measurement Values	  [vdsDutList.“MeasValCoun“]
	 Duration		  [vdsDutList.“TestDuration“] s

	  Master data example, see Figure 9-9

21.	 Create a new band from type  Detail header and one from type	
	  Detailed data. These two bands are closely linked and serve the display of the 	
	 measured values of the individual interpreter steps. The names are stored in the 	
	 detail header while the variables (values) are stored in the detail data.

	 Detail Header:
	  Step No.
	  Step Name
	  IP Step
	  Measurement Values
	  Limits
	  Results

	 The detailed data section will fall back on  frDSMWList and give out the
	 variables (values) to the detail header.

	  Detail header + data example, see Figure 9-9

22.	 You can vary the distances of the bands with the help of the gray areas. To see 	
	 your report, go to  toolbar  Preview report and adjust the layout to your
	 preferences and check whether the variables are displayed
	 correctly.

84

9. Reports

Figure 9-11

Measurement

Results

23. Save your report via the  menubar  File  Save as
 under a new name.

10. DLL

85

The acronym DLL stands for Dynamic Link Library. A DLL can include a program
code, data and resources in any combination. The portable executable file format is
usually used for this purpose. A DLL serves the purpose of reducing the required storage
space on the hard disk or main memory. But other application fields are also possible.
An example of using a DLL:

The program code, which is used by multiple applications, can be summarized in a DLL
and stored on the hard disk. The advantage is that the program code only has to be read
once into memory and not from every single application that wants to access it.

■■ Exercise 10-1
	 Dealing with DLLs

This exercise should shed some light on how to deal with DLLs. The Kernel32.dll,
which is found in  Windows directory under subdirectory
 System32 should be used. This DLL contains a function to generate a beep via the
speaker inside your computer. The Kernel32.dll needs to be included in your sequence
and the beep function to be introduced to the system. Using this function, implement a
sound pattern.

Step by step:
1.	 Log on as administrator
	 Navigate from the toolbar Password. Press the F4 function key or select 	
	 Administrator and type in admin.

2.	 Create a new family type with a variant, set this to ‘active’ and save the data.

	 Example: Family Type:	 15DLL
		 Code Type:	 01DLL
		 Information Type:	 Kernel32

3.	 Edit the sequence list and the test step parameter. All you need is one test step. 	
	 Enter a new name for the ‘step type’ in order to generate one new interpreter step.

10. DLL

86

10. DLL

Figure 10-1

Sequence List

Figure 10-2
Test step para-
meters

4. Select the variant from step 3 via  Typeselect and start the sequence.

5. Edit the interpreter step:
 Th e beep function to be used from the Kernel32.dll delivers a real value after
 execution. In order to assign this value, you should fi rst create a variable of type
 real.

6. If a DLL is integrated into an interpreter step, the DLL should be made known
 to the system and is assigned with a so-called alias. Via this alias, the DLL can be
 called upon in the interpreter. With the procedure  DLL.OPEN (alias and path
 in which the DLL is stored in) the DLL is opened and managed by the
 internal alias.

 Syntax:

DLL.Open ('Kernel32', 'C:\Windows\System32\Kernel32.dll');

 Th e DLL can now be addressed by the name Kernel32.

7. Th e procedure  DLL.REGISTER() enables functions and procedures to be
 found in a DLL and verifi es the sequence step by applying a name using an alias.

 Syntax:

DLL.REGISTER ('Kernel32', 'Beep', 'S:I,I:L');

 Th e beep function contained in the DLL Kernel32 is introduced to the system.
 In most cases, when calling upon functions or procedures from a DLL, variables
 must be transferred. Th is must also be specifi ed when registering the beep com
 mand since it depends on the types of data to be transferred, in this case by

10. DLL

87

	 specifying  'S:I,I:L'. Through this information, the call format of the function / 	
	 procedure is defined:

	 The first letter specifies the call type, here three types are differentiated.
	  P for a Pascal call,  C for a C-Call and  S for a standard call. The call 	
	 type must correspond to the routine’s call type in the DLL.

	 The definition of the call type is followed by a colon (:). The codes for each para	
	 meter are separated by a comma and can be obtained from a list in the interpreter 	
	 help. The return value is separated from the parameters by a colon, which also 	
	 follows the indication of the type.

	 Thus, for the syntax:

DLL.REGISTER ('Kernel32', 'Beep', 'S:I,I:L');

	 following explanation:

	 The beep function from the DLL Kernel32 is introduced to the system. Calling 	
	 upon the function is done via a standard call. Two parameters of type integer are 	
	 transferred, and the beep function returns a Boolean type value (this corresponds 	
	 to a logic value). The integer frequency (pitch) in Hz and tone duration in mil	
	 liseconds is then sent to the function.

8.	 The system is now aware of the DLL of the Kernel32 and beep function in ‘pitch’. 	
	 The beep command can now be called and the return value of the variables
	 assigned. The invocation of a command (function or procedure) is done with the 	
	 function  DLL.Call ().
	 Through this task, the previously registered function can be called upon from 	
	 the also previously opened DLL. In this function, the parameters defined in the 	
	 registration are transferred.

	 Syntax:

Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);

	 The beep function is called upon from the Kernel32 DLL, to run with the 	
	 frequency 3500 Hz and duration of 50ms. The return value is transferred to the 	
	 variable value.

	 By repeatedly calling upon the beep command, sound patterns can be created 	
	 with altered frequencies and durations.

88

10. DLL

	 Syntax:

	

 Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 4500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 5500, 50);
 …

9.	 At the end of your interpreter step, close the DLL using the procedure
	  DLL.CLOSE(). When the command is executed, all registrations are deleted. 	
	 This means that when a new instruction is to be carried out after the DLL.	
	 CLOSE command, then a new registration is required for the DLL to be opened 	
	 and instructed.

	 Syntax:

DLL.CLOSE ('Kernel32');

	 The DLL with the internal alias Kernel32 is closed and the registration of the 	
	 beep command is deleted.

	 Source code:	 IP_DLL.IPS

	

var
 Value : Real;

step
//**************Open the DLL:********************************
 DLL.Open ('Kernel32', 'C:\Windows\System32\Kernel32.dll');
//***

//**************Register the Beep command:*****************
 DLL.REGISTER ('Kernel32', 'Beep', 'S:I,I:L');
//***

//**************Access the Beep command :**********************
 Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 4500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 5500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 6500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 5500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 4500, 50);
 Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);
//***

//*********Close the DLL and set the values:**********
 DLL.CLOSE ('Kernel32');
 SetValue (0);
//***

end.

10. DLL

89

10.	 Save your interpreter step and restart the sequence. Now, the sound of the 	
	 generated sequence of notes (pitch) should be heard through the internal speaker. 	
	 Please note that after a certain frequency level, sounds will no longer be
	 transmitted from the speakers. The frequency range of human hearing is
	 about 20 to 20,000 Hz.

11. TestManager ME

91

11. TestManager ME

Th e TestManager CE provides the perfect integration of the ME-iDS driver concept
made by Measurement Computing Corporation. Th is software allows the user to the
simple and rapid entry into the Meilhaus ME-iDS system allows drivers.

To use this part of the book eff ective, can you please upload the MCD TestManager
ME www.mcd-elektronik.de/deutsch/meil.html down under. On this side there is the
free trial version available.

Install the TestManager ME on your PC. To do this, follow the description to install the
TestManager CE at the beginning of the book (see Chapter 1 introduction).
Reboot the system, as used by the CE version, with double the shortcut on your desk-
top.

The development environment TestManager ME

Figure 11-1

Program

window

Th e program window of TestManager ME is similar to the structure of the TestManager
CE window. Major diff erences lie in the structure of the menu and the toolbar this new
menu items or buttons are created. In the menu bar user tools anchored the point again,
while the toolbar with a Meilhaus E. -, ME one monitor and one MCD-button has
been fi tted. Operation and menu navigation are identical in both versions, therefore, at
this received will not be elaborated on this (see appendix - Diff erences in the menu of
TestManager ME).

92

11. TestManager ME

For more information about the company‘s products please contact Measurement
Computing Corporation over the button  Meilhaus E., In the case of an existing
internet connection directs to the homepage. Get information about products, drivers
and software, references to books and literature, etc.

The button  MCD Elektronik guides you to the MCD website, which you
have already downloaded the trial version.

The ME is about the Monitor tool ME button on the toolbar to monitor
reach.

The special TestManager ME version was created only for ease of instruction
and is not further developed. The card is fully support the MEILHAUS In TestManager
CE contained and can be used directly.

Appendix

93

System requirements

•	 Windows 7®, Vista®, XP®, 2000® oder NT®
•	 Program directory on local drive
•	 Write-in access in the program directory
•	 Approx. 25 MB free hard disk
•	 32 MB RAM
•	 VGA screen (640x480 Pixels)
•	 Pentium ® PC or compatible
•	 Installed hardware dependant on equipment
•	 Optional: installed network
•	 Optional: installed Borland Database Engine (BDE)

These values are minimum specifications; the computer can of course be better equip-
ped. The program itself sets no files outside of its program directory. One exception
is files in paths which are specifically stated (e.g. for measured value storage on the
network).
The program can also be started on regular (office) PC’s, if the access to the unavailable
hardware in the program settings is switched off.
The program supports Windows XP style when enabled in the operating system and
when the Help is activated on the desktop page of the default setting.

Useful Web Links for TestManager Users

www.mcd-elektronik.com		 MCD Elektronics website.
				 Information about TestManager CE, 	
				 downloading the demo version, as well as
				 the tutorial.

www.meilhaus.com		 Distributor of cards and associated 		
				 measurement technology products.

Appendix

	TestManager_ENG Cover einzeln
	TestManager_ENGJULI2014 ohne Anschnitt

