Il Measurement Technology beyond the decimal point ELEKTRONIK GMBH

TestManager CE
Software Development Environment

for test sequences and test

=
® TestManager CE V15146 -1y TGLUECKS;

PIEL - Zufallszahi - 01 Zufallszan £, 0. 999

=
THP Auswehl_ essierte Snstelungen Egiteren _Maf T

e e eyt

S»anwn wpmm F2 s ¥ Tope Edit Ts 2 P P Wit | Reset (81F5] Ende (alefy
l) etup weE tEdit IPEd sy suw Ende
[\)

- - PrUfergebms

= e o
==
[l @6 we] s 3 00-.
Rmaio] Odsat]

=i 1~ Fir 3= Ve

MCD Elektronik GmbH
TestManager CE
(©) 2001 - 2009 by MCD Elektronik GmbH

Version 1.5.1 Build 46 (2009-10-12)
ttp: \wiww.med-elektronik.de

ELEKTRONIK GMBH |

) TestCollection TestManager CE Setup

Step 53| Demo version

(In the demo version the export and prin
ot possible and hardware access is deact

Warning: This program is protected by ct
treaties. Unauthorized reproduction of di
il and criminal penaities, and will be pr
extent possible under the law.

Willkommen beim Setup
Assistenten von
TestCollection TestManager
CE

Close Inf

Der Setup Assistent wird TestCollection TestManager CE auf
Invem Computer instalieren. Kicken Sie auf Weiterum

fortzufahren, oder auf "Abbrechen” um den Setup Assistent
2u beenden.

~roze o]

—
S S et s e
ke spoueq wmoanciol o 9k
‘,m’m et ool e bureesea A co

ook suq pauuate scosee @ gesc
(1 s qoluo Astziou fu exboLs 3ug DULH

-Dewo AGkzIou

TestManager Classic Edition

Test sequencer including a
development environment for test procedures.

Content

MCD Elektronik TestManager CE e Software Development Environment
for test sequences and test
First Edition, for TestManager, version 1.5.1.46

The information in this book is published without regard to a possible patent
protection. No guarantee against general use of brand names. Texts and images
were carried out with extreme care in the compilation. Nevertheless errors cannot
be excluded completely. Editors and authors can neither be held legally respon-
sible nor accept any liability for incorrect information. The editor is grateful for
suggestions and information about errors.

E-Mail: info(at)mcd-elektronik.de

All rights reserved, including photomechanical reproduction and storage in elect-
ronic media. The industrial use of this book's models and work is not allowed.

Microsoft Windows, Excel and Explorer are registered trademarks of Microsoft
Corporation.

MCD is a registered trademark of the MCD Elektronik GmbH.

Other product and company names are sometimes registered trademarks of their
respective companies.

© 2013 by MCD Elektronik GmbH

Hoheneichstr. 52 ¢ 75217 Birkenfeld « Germany
www.mcd-elektronik.com

All Rights Reserved

Printed in Germany

Content

Content

INtrodUuction ..ceeeeeeeeeeneceeeeneeeeeneceseeneeceeessesessssssosessenes
MCD TestManager CE Software 7
The Basic Idea of the Book 7

1. INtroduction..cccceeeeceeecreceseccssccseccssccsscssccssecssscssoassed

Download TestManager CE........cooeviiineneniennenniinsnninensessessessesnenens 9
InStallation...ccccsreeeeerereeeecersseeeecssssneeeessssseeeesssssasessssssseeessssssasssssssassessnns 9
First ApPlication.....cuceceiiienencsncnnisnisnisiiieessessissessissesssssssessesseasesnes 11
The Development Environment 11
[TEXEICISE 1-Tuueeereenneceeeerrnnnceeeenssnncccessssnsscesssnssssscssssnnsssssssssnnssecsssnnnne 12
Start an Existing Test Process 12
TEStWANAOW....uuveerreeerereeeessssssssnsseeeeensssssssssssssssssasssssssssssssssasassssssssssssee 14

2. Step by Step to Your Own Testing Process...........17

Family Type....coucnueveiriiinininiiniiiieiiinesinsenesenesenessssessssessesessens 17
[JEXErCISE 2-Luuueeisureesueenineniseneninnessneessnensssnesssssesssesssssesssssesssssssssnens 17
Creating a New Family Type 17
Variant Type..ceieeneniniinieniintnreseneenenssnessesaessasessessaneses 19
LJEXEICISE 2-2uurieiuurensnnensneessanenssnnessnnesssnnsssssesssssessssssssssesssssessssassssans 19
Managing Variants 19
TSt SEQUENCE..uueeurirrreniensienstniseesiensiensteesnessesssessssesssesssesssasssnesssessaes 21
Sequence List 22
Sequence Steps 22

Test Steps 23
[IEXEICISE 2-3ueesueessressressrnsssnessuesssesssnessnessuesssnssssesssosssnsssssssesssasssssssaees 24
Creating a Test Sequence 24
IDterPIEter..cccnniinninrenseniniinessenninisnessesninsssessesnssnsssessessassnsssesanssassnesaes 26
Interpreter Editor 27

Content

Interpreter Assistance 28
Debugger 28
[TEXEICISE 2-4eeerrereeeersnneeeessaseeesssasseecssssssesesssnsssssssssssssssssnsssesssssssssssns 28
Editing Interpreter Steps 28

3. Screen Objects.....uieiueensueensnncssneensnecssneessnenssnencsnns33

[TEXEICISE 3-1uueeerennneceerernnnnnceeeernnnseceesesnssscessenssssssssssssssssssssnsssecsssnnnns 33
Screen Objects 33

4. Global Variables........cceeveeecerrenecenenecserseeesensseeceeens 3’

Converting Data Types......coeereirrerensnisessnisnesnssnnssessnsssesnsssesaessnsssesses 37
Programming Made Easy. 37
LIEXEICISE 4-Luuuureeeerreeeessessssssssnsseeeeesssssssssssssssssssssssssssssssssssssnsasssssssssses 38

Gambling 38

5. TOOISu ceeueeeeerenneerrnneseersnnserssecssrsssescasssessassssssassnnessdd

LIEXEICISE 5-Tuuuurreeeeeeeeeeessssssrsnnsreeeeeeesssssssssssssssssssssssssssssssssssnsssasasssssses 45
Using Tools 45

6. FHlESurueunirrennierenncenreeecessneesesssessssssssssssssssscassnnsesd9

LIEXEICISE B-Luuuueeeeeeeeeeeeeererssssnreeeeeeeeecsssssssssssssssssessessssssssssssnsasasssssssses 49
Writing and Reading Files 49
[TEXEICISE B0-2uueeeeeeeeeeeeeeeessrsrssnssssseeeecssssssssssssssassssssssssssssssssssssssassssssssss 53
Writing, Reading, Renaming of Files and Getting to know the Date Time
Funktions 53
INT FlE.uuuuueeeeeieneeeeiinneeeeessneeeecsnseeesssssseesssssssesessssssesessssssasesssssaasssses 60
[JEXEICISE B-3...ceeeeeereeeeeeeeeensnnnssesssssseeseneesseeessssssssssssssssssssssssssssssssssasans 61
Create, Read and Write INT Files 61

7. Hardware ACCess-..00'l..00'l..00'l..00'i..00.l.....l....'l....'l.67
License Request 67

Serial INterface...ccceerreeeeerrrrereeecsrsereeerssnneeecssssseeeesssssseessssssesessssssasssssnans 67

Content

[TEXEICISE 7-1.eeeeeeeeeeeeeeeeeeeeeeneessesssseseseseesseesssassssssssssssssssssssssssssssssssane 67
Using Serial Interfaces 67

LT D 21 7 TP £, |

[TEXEICISE 8-1.ueeereeuneceererrnnneceererrnnsceesesassscesssnssssscsssssnsssssssssnnssecsssnanee 73
Dealing with Measurement Data 73

bR 10111 o U 474

) 535 o LT OO 77
Creating Your Own Reports 77

[IEXErCISE 10-1.uuueiiieeenenceeerraennceeesaansccsesssssnssscsssssssssssssasssssssessnassssssases 85
Dealing with DLLs 85

11. TestManager ME Measurement Card Support...91
The Development Environment TestManager ME 91

ApPPendiX....cceeceeieesnessnensnensnensnensnensnessssssnsssseennens 93
System Requirements 93
Useful Web Links for TestManager Users 94

Infroduction

Infroduction

Have you ever worked in a software development environment, or with ,,Classic* pro-
gramming languages like Visual Basic, C #, C++ or any other C-variant?

Then you should be familiar with important fundamental concepts of programming
languages, such as data types, loops or syntax. If you have not had any experience with
programming and seem completely alien to the basic concepts, you will still find it
moderately easy to create test sequences with the MCD TestManager.

MCD TestManager CE Software

The MCD TestManager provides a test sequencer including a development environment
for test procedures. The environment allows you to create and manage family types and
their variants, which can then be used for the audit process. The TestManager provides

a wide range of possibilities, for example the connection to different hardware com-
ponents. Common bus systems, such as LIN, CAN, TCP / IP and IIC- bus are also
supported and a variety of tools and configuration options are offered to the user.

The Basic Idea of the Book

This book serves to facilitate the entry into the MCD TestManager development envi-
ronment. The help of exercises improves access to the functions and ways to facilitate
the TestManager CE. It cannot however be regarded as a general reference guide or a
handbook. The focus of the book is its exercises that are closely aligned with practice.
They are chosen so that the read information can be directly implemented and that the
user obtains useful tips and further information.

As already mentioned, this book is not a general reference. It is more of a tutorial guide
that covers the scope and simplicity of the topics at hand. However, should questions or
problems arise, see Appendix, for further detailed sources of information.

1. Introduction

1. Infroduction

Download TestManager CE

To use the book and perform the exercises effectively, you can download

the MCD TestManager CE from the Internet. The software can be obtained
on our website at www.mcd-elektronik.de/tmce.html.

Download the trial version of TestManager.

Installation

Once the download is complete, you will find a zip folder with the name Setup.zip whe-
re your downloads are stored. This contains the SetupTestManagerCE.exe that must be
executed. When the installation window appears, first choose the preferred language and
confirm with the # OK button.

TestCollection TestManager CE Setup i

Bitte Sprache auswahien:

XD [peisch Peutschland) -

Figure 1-1
[Aborechen | Language Settings

To confirm that you want to install the TestManager CE, click on s Next.

TestCollection TestManager CE Setu]
g P

Willkommen beim Setup
Assistenten von
TestCollection TestManager
CE

Der Setup Assistent wird TestColiection TestManager CE auf
Threm Computer instalieren. Kicken Sie auf “Visiter” un
fortaufiahren, oder auf “Abbrechen” um den Setup Assistent

Figure 1-2
Abbrechen Installation

Important information about the system requirements and how to deal with the pro-
gram will appear in the following window. Read the text carefully and
then confirm with s Next.

1. Introduction

1) TestCollection TestManager CE Setup X
Liesmich ~.
it lesen Sie den fogenden Text aufnerksam i‘o

MCD Testsystem TestManager CE

b2 ez

b2 CE.exe

Hinveise zum Programm auf der TestManager CE CD

Stand dieser Dokumentation : 2009-10-12
Bezug auf Softwarsversion : VI.5.1

Figure 1-3
<z [Caetrechen | Information about the Program

Advanced Installer

The next step will be prompted to select the directory under which the program will be
installed. Confirm or ® change the default path with Select and then confirm with
» Next.

1) TestCollection TestManager CE Setup =)
Installationsverzeichnis wahlen ~
B — o
Unin d b Vieiter,Fir ein
altematives Instalationsverzeidis wéien Se bitte en anderes Verzeichnis Goer
Wahlen".
Verzeichris:

C:\TestColection|Testng Testianager CE\ - Wahlen.

Figure 1-4
<Zwk Abbrechen Select Directory

dvanced Instaler

To install the TestManager CE select # Install. Once installation is completed,
select W Finish.

TestCollection TestManager CE Setug)
g P

Der Setup Assistent von
TestCollection TestManager
CE wird abgeschlossen.

Kicken Sie auf Fertigstellen”, um den Setup Assistenten 2u
beenden.

7] TestCollcton TestMansger C ausfuhren

Figure 1-5

Completion of Setup

The MCD TestManager CE is now installed on your system and can be executed. A
shortcut is also created on your desktop (TestCollection. TestManager CE), through
which you can start the TestManager.

10

1. Introduction

First application

Double click on the link of the TestManager CE to start. Depending on the operating
system there may be a message that states that the program needs to be restarted. Should
this occur, close the program and restart it. This program is a demo version, and will
often prompt an info box that can be confirmed by $OK.

It also offers the ® Order now option to order a full version of TestManager.

The development environment

i

P TestManager CE V1.5.1.46 - Typ: GNETSAMPLES - Sample .Net - 01 VariantDotNet EC: 0.999 =&
Typ Auswahl Messwerte Enstelungen Editieren Ablauf Tools Info Intem Hife Exit

| B B &
Sejlip

Type Edit Test Edit IP Edit Passwart

=

<
Rleset [AISFE] Ende [Alt+F4)

R

Start () | Typwahl (F2)

ELEXTRCN GMEM.

Meniileiste Symbolleiste

T

.

PASS

IEI

Infoleiste

System

Statusleiste Figure 1-3

| Mode : Step-By-Step | @] Beruzer @] System:Beret Program Window

Figure 1-3 shows the program window of the IDE. Here, you can access your settings,
tools, functions and much more. You can also receive more information and examples
to these settings, features, tools, etc.

The main area is used for the display of test results, when this option is activated. Alter-
natively, this area could be used to retrieve information during the inspection process.
The main menu is integrated in the menu bar. This gains access to all functions, as long
as they are enabled in the setup. The menu bar contains the following tabs (see Appen-
dix - Important TMCE menus): Type selection, Values, Setup, Edit, Start, Tools, Info,
Intern, Help and Exit.

11

1. Introduction

The toolbar contains buttons for calling up important features without having to go
through the menu. The number and layout of the buttons can be edited and customized
to fit the needs of the user.

The toolbar contains the following default buttons: Start, Type Selection, Setup,

Type Edit, Edit Test, Edit IP, Password, Reset, and End.

Information about the system is found in the info bar. You can also hide individual
elements in this bar. It contains the status lights that reflect the system’s current status.
A clock and information about the currently selected language can also be found in this

bar.

Tip:
In the general settings, the icon and info bar can be customized according to the prefe-
rences of its user.

The status bar contains information about which mode is currently selected, the
license of the software, the user and the system.

O Exercise 1-1
Start an existing test process

Objective:

e Familiarization of test sequences
e Structure of test sequences

e Usage of TestManager

Step by step:

1. Logon as administrator
Navigate from the toolbar s Password. Press the # F4 function key or select
Administrator and type in #admin as the password. Confirm the password by
pressing Enter or the # OK button.

Note:

Users in the TestManager can be divided into five password levels. Behind the various
password levels, different permissions are stored. These can be edited by going to the
menu bar ® Intern ® Access Levels.

12

2. Selection of family type OMATH:
Navigate from the ® toolbar ® Typeselect to open the type selection window.
Open the tree structure of the family type OMATH by double

clicking on the family name or the sign ® +. Use the same approach to select

1. Introduction

® Code: 01 VariantMath, the Family type, and then select sequence s 1.
Confirm your choice with the ® OK button.

SBS and Automatic Mode:

During normal operation, the system is set to automatic mode. Here, the test

is carried out precisely according to the specified test sequence. Through the
individual outcomes of the test-steps, one result is examined so that it could rate
the specimen. The SBS mode (Step-by-Step) gives the user the capabilities to
process and edit the sequence step by step. The mode is provided for the devel
oper, the test procedures or the Debugging. During a test step, information can
be given and the source code can be edited.

Manually start the test sequences:

The test sequence can be started by ® toolbar ® Start (up) or alternatively via
the ‘arrow up’ key on the keyboard. During single step mode (step-by-step, SBS)
the system stops after every test sequence and allows the operator to select the
next test step arbitrarily. Switching steps can take place either before the start of
the test and during the test.

Repeat test step:

If the system is in SBS (Step-by-step) mode, the individual test steps can be
repeated. This can be done via the ® Repeat button located at the bottom of the
window.

#© TestManager CE V15.1.46 - Typ: OMATH - Sample shows the math functions - 01 VariantMath EC: 0.999 | & |
Frlfschitousgaben | Ausgefite Pifchite Debusaing Steirt | pebugirto |
Meldungen Step . 1
Iterpreterschit IP_Math uft. Step Index 1
RandomValie = 12 53 P oviath

ndom +/- =
Exponent 10[4) = 1584893192461 06w: 157

Log10= 1.2

Sinus = 0.332038085967226 UG 157

AicSinus = 12

Interpreterschrit IP_Math beendet 2Zei: 170240

Interpreterschrit P_Math l5ut. Prifdauer
andom V ale =

Random +/- = Durchlauf nia

Exponent 10 = 0.398107170553437
Log10=

Sinus - 0.333418342308851
AicSis = 04

Prifinge.
rm

Atueler Frifschiit: Messnert: Einbei.

. @ses A = & Fehier: [behanden =
b Step+ Anshl =R I Statt im Debugger Figure 1-4

¢ [X] v = = 3
m Q Abbrechen Step \Wiedmhclen Edt Para. Debugger

kY
Tooks Repeat Test Step

13

1. Introduction

14

What is the procedure?
In this sequence, a random number is initially generated. Figure 1-4 shows

the step that was repeated three times. The first time, the random number
generated was 0, the second time 1.2, and the third time 0.4. A randomly
selected sign is also chosen for these random numbers. The random number

is now used as an exponent to base 10 and the result is then calculated. Example
from the picture: 10(to the power of) -0,4 = 0.398107170553497.

Now, in order to obtain the randomly generated number, the mathematical
operation is reversed. The logarithm base 10 is calculated from the result. From
this calculation, the prior generated random number of (-0.4) is retrieved. Now
the sine of the random number is calculated (-0.38941 ...) and this operation

is again reversed in order to calculate the arc sine of the result. Here, the
randomly generated number retrieved should be displayed as the measured value
in the measurement value window.

5. Selecting the next steps:
The next step can be initiated by selecting the # Step+ button.

The testing process is completed after only one step, since the test sequence
only includes one step. After selecting the next steps with the Step + button, the
test sequence is completed and the system returns to the main window.

Test Window

Once a trial starts, the normal program window switches to the test window.

The areas in the above right display the step-info and debug-info, the current contact
position and the DUT overview being tested for the current contact position. If the
DUT has only one contact position, the contact position indication will be hidden.

1. Introduction

0 TestManager CE V15.1.46 - Typ: OMATH - Sample shows the math functions - 01 VariznthMath EC: 0.999 e
Priftschiitausgaben | Ausgefinnt Prifschite Debuaging Steplnio | Debuginto |
Meldungen Step . 1
Interpreterschiitt IP_Math [Euft Step Index: 1
Random Value = 12 P | Pen
Random +/:= 1.2 - Mat
Exponent 10(x) = 1584893192461 06w 157
Log10=1
Sinus = 0.932033085367226 UGW: 1.57
AreSi =12

ihied bt beendet Step- und Debug-Info | 2=t 170840
?_Math [auft Priftdaver:
andom Value = 0.4
fom +7- = - Durchlauf: n/a
wponent 10(x) = 0.338107170553487
og10= 04 0
Sinus = -0.383418342308651 Ausgqbebere\ch
ArcSinus = 0.4

Priflingsibersicht

Knopfleiste \

rm1

Priifinge ‘

il Prfscnit i essrer Eriei
@ss A | ! | ===
Mode Stepr Anviehl IFEdit I StartimDebs Figure 1-5
v | [+ 1 & .
%Q Abbrechen | Step _W\e_d?{b_a\en_ Edt Para Debugger f:\a\s Test Window

The output range can be switched back and forth between test sequence output, the
display of the executed test steps and the Debug display. SBS test steps can be controlled
by the button panel, and depending on the password level, parameters of the steps can
be edited as well. Test steps can be cancelled, forwarded (step +), switched back (step-)
and repeated via the button panel. The sequence mode can be changed (from SBS to
automatic and vice versa) via the Mode button. This can also be done during the course
of testing. The interpreter editor (test step source code) and editor of the parameters
(parameter data for test steps) can be called upon.

Additional tools and information can be customized with the Debugger and the

Tools buttons. Process steps can be repeated, for example, verifying measurement results
by performing test steps again. Through the error-detect setting, the user has the oppor-
tunity to influence the behavior of the test steps in case of failure

The Step- and Debug info-window provides an overview of details to the steps, upper
and lower limits, test time and the current test period.

15

2. Own testing process

2. Step by step for own testing process

After gaining initial experience with the test manager, the next question is:

How is a test sequence created?

This question will be answered by step by step illustrations with specific examples.
The test sequence from Exercise 1-1 still has pretty little to do with measuring and
testing technology, but is quite easy to understand because it concerns mathematical
equations. This process merely scratches the surface of measurement technology and
is initially set up to help you understand the build-up, the structure, and the elements
involved in the testing process.

Family Type

The program allows testing of various DUT types. Each DUT type to test requires its
own set of data: process of the tests, extent of tests, thresholds, test steps, etc. This set of
data is known as the family type. Each family type consists of one or more variants. The
family type is the umbrella term of the data records. Variants (variant types) with similar
characteristics are subcategorized together under this ‘umbrella’. One possible example
would be a DUT that is available in different variants (variant types), for example, a car
radio (12V) or a truck radio (24V). These can be managed under the same family type.

[l Exercise 2-1
Creating a New Family Type

To begin your testing process, first you have to create your own family type. In this exer-
cise, you can derive the existing OMATH family type. When you find OMATH, there is
a function that allows you to derivate or copy the existing family type. The system then
creates a new family type, and gives the option of editing the name and the content
included from the family of origin. That way, the OMATH family type and its content
remains unchanged and is preserved for further use.

Step by step:

1. Log on as administrator
Navigate from the ® toolbar ®Password. Press the F4 function key or
select Administrator and type in ®admin as the password. Confirm the password
by pressing Enter or the OK button

2. Open the Edit Types and Variants window via the ® toolbar s Type Edit.

17

2. Own testing process

3. Select the family type OMATH in the window and select the button in the
®» toolbar ® Derivate family type from existing family.

4. Assign a new name (example: IMATH) and confirm
this with the ® OK button.

Familie ableiten

Familie zum Ablgiten wahlen

v IMATH

" 1DATETIME

" ZMEASUREDATA
" 35CREEN

" 4CURVENMONITOR
" EDLL

" EMETSAMPLES

gewahlt: OMATH
neen Familiennamen eingsben

TMATH Figure 2-1

Abbrechen Derive family type

Tip:

The name of the type family is used for creating files and directories. Here is where the
test receives its title.

18

5. Change the Type Code (e.g.: 01 Math), since two variants with the same name

are not allowed. The Type Information field can also be change (example: ran
dom number), but this is not mandatory.

© Typen und Varianten bearbeiten =S

Typiste Tyofsmile Varisnte

HE s Bwg amgsd e

FRPT=r Fy—

=P Famiie: OMATH. (1 Variante/n) Fanilie
5101 Vst Sl shows them. | i
=1 @ Famile: 1DATETIME. {1 Variants/n] I3
01 VariartDateT the | Tvp-Code tenieratode
= @ Famiie: IMATH, 1 Yariante/n) | [orbean [o
=101 Hiath - Zufalszahl

i Typ - Informalion Kortektiemos.
= @R Famiie: ZHEASUREDATA, [T Varantedn) | Zutallseahi [= = Bild 2-2
= 01 Variantieasu - Sample handle me
Barcode Mode kv Ablauftr_ Testpostionen
= @ Famiie: BCREEN. 1 Vaiantedn) [7 =0
51 01 VariantS ereen - Sample shaws dife |10 = $ared AR RS Type List
= @ Famiie: 4CURVENMINITOR, (2 Varante, EC-Stst EC-Stop
=1 01 YariantCurve - S ampls shows the [o= [ems=]
= 02 VarianiCurve - Sample shows the ¢
. @@ Fanile SOLL. 1 Varanef] Benutzerdefnistes Layout | Beruizerdsfierte Felder |
= 01 VariantDLL - Sample handle DLL iy H-Pasitons 7 - Posiians
= @ Famiie: BNETSAMPLES, (1 Variante/n]

1 01 VariartDalMet - Sample Net r [T [Defavit

2. Own testing process

6. Save the Type List
= toolbar ® Save Type List

Family types of the currently used window (Figure 2.2) can also be created, renamed
and deleted.

To create a new family type, select one of the given samples in the Edit Types and Vari-
ants window and from the ® toolbar ® select create new type of family. As a result, a
new family type with no content is created.

Select the Rename family type button in the s toolbar in order to rename the already
existent family. The family types listed in the left portion of the window can be deleted
by selecting the delete whole family type with variants.

To save changes, go to toolbar ® Type List Save Type List.

Variant Type

A variant type is a clearly identifiable type of DUT. The data within a variant type
determines the exact testing process that is supposed to be carried out by the TestMana-
ger system. In case there are two DUT’s whose types of examination differ, there is an
option to split them up and define them as two different variant types

Note:
You can manage similar DUT’s from the given selection of variants. The minor diffe-
rences can then be chosen and categorized under the filtered variants.

[l Exercise 2-2
Management of Variants

To establish your own sequence, create a new variant to the already derived family type

(IMATH) from Exercise 2-1.

Step by step:

1. Log on as administrator
Navigate from the m toolbar # Password. Press the F4 function key or select
Administrator and type in ®admin as the password. Confirm the password by
pressing Enter or the OK button

2. Create variants:
Variants can be created in the Edit Types and Variants window by going to the
s toolbar ® Type Edit.

19

2. Own testing process

3.

Select a family type in the left panel where a new variant type was created (from
Exercise 2.1: IMATH)® toolbar ® Create New Variant

0 Typen und Varianten bearbeiten B
Typliste Typfamile Variante
HF G wdE a&d EC
Baum + Ediiersete | Datengiter |

= @A Faniie: DMATH. (1 Vaiiarte/n] Famiic

= 0 Vst -Semple shows the | [yr
= @@ Famiie: 1DATETIME, [1 Variante/r]

= 01 VaianDateTi - S ample shows the | | 148 Code adeplouCocs
=1 @A Farmiie: TMATH. (1 Yariarte/n) |01 Math

=]

1 Wath - Ziallezahl T | Typ-Infomation Kontaktierpos.

=@ Famile: SHEASUREDATA. i Varlanic] | [zufalszanl E

= 01 VarianiMeasu - Sample handle me

Barcode-Mode Akt Ablaufr T

=1 @R Famiie: 35CREEN, [1 Variante/n] T =

3 07 Vsionoreen- Semplechomo it | 10=5red =1 @ [A= [1=l
= @R Familie: 4CURVENMONITOR, 2V ariante. EC - Start EC-Stop

= 01 VariantCurve - Sample shows the o o= 933

= 02 VariantCurve - Sample shows the o
= @@ Feriie: SOLL. {1 Vaiante/n] Benutzerdefiniettes Layout | Bentzerdefineite Feider |

(= 01 YariantDLL - Sample handle DLL
= @8 Familie: GNETSAMPLES. (1 Variante/n)

Ak X Positions ¥ - Posiions
[01 VariartDoiNet - Sample Net O

[=g Default
|

Figure 2-3

Create Variants

4. = Edit Type code (c.g.:02 Math), ® Type Information (c.g.: comparison) and

activate the variant type with a checkmark by clicking on the empty box
below mActive.

& Typen und Varianten bearbeiten e -
Typiste Typfamie Yarinte

BE veB»d w85 80

San Edtrsete | Dt |

=/ @R Familis: IMATH_ (1 Variante/n) Famiie
8 01 Vaiarthath - Sample shiows the m.

= 0 Pl ATETHE (1vaiamoi) |POTF

& 01 VarianiDateTi {[zpEtoc [aaple;Cod)
= @A Fanii: TMATH. (2 Variarte/) [02 Math o=
3 01 Math - Zoflkzsh Ty - nfomation Kontaktierpos
= 02 Math - Zahlenverglech Raervedecd | 1t B
= B s MEASLREDAT 1 Varante!] | paoocentons Bkl AblaurNi Testpostionen
iicons-Sonplehande e |[F2SRE =
= @ Fanii: ISCREEN, (1 Varante/r) 0=Shated P T
8 01 VariantScreen - Sample shows i EC-Slat_ EC-Siop
= @@ Familie: SCURVENMONITOR, (2V ariante. 0 39|

8 01 VarianiCurve - Sampl shows the o :
8 02 VarianiCurve - Sampls shows the o st | |

= @p Famiie: SDLL. (1 Vasiarte/r) sty R -Postions Y -Postions
S 01 VarianDLL - Sampl hinds DLL

= @ Familie: BNETSAMPLES, (1 Vaiiante/n) u ! M ode |

= 01 VarianiDoth et - Sample . Net |

Figure 2-4

) Activate Variants

5. Save type list to accept changes ® toolbar ® Save Type List.

20

2. Own testing process

Other functions that are available in variants are ‘copy’ and ‘rename’. In order to copy a
variant, select a given variant in the left window and choose the function ® toolbar

= copy variant. The same instructions apply when wanting to delete a variant. Select
the variant in the left window and choose the function ® toolbar ® delete variant.
Now a test sequence contains its own family type with two variants.

Test procedure

Tests run according to a set sequence. The test sequence editor in the main window
can be selected from the ® toolbar ®Test Edit or by going through the ® main
menu $Edit ® Test Sequence Edit. When opening the test sequence editor, the data
of the currently loaded family type will be displayed and made available for editing. If
the data of another family needs to be edited, select a variant by clicking on the “Type
Select’ button in the toolbar or select the family type in the test sequence editor.

@0 prufablauf und Parameter editieren =
Tabellen Bearbeiten Suchen Anderungen Prufschrittparameter Extras Analyse
=& < 8 Y% YT R B
Famiie: OMATH |
Variante: |01 VariariMath - Sample sho || Ablauf |1 - defauit - plsase sdit [dsfault] | Systemhie: [1]- "+
Ablaufliste Ids: 174 Akt 1) Ids 173
“TppCodefiter Stephr Step At Name Name [englisch]
Sps. bl | Stepr. Goto Info :auto created parameter list. please edit
: auto craatad saquenca, plaass edit 1 1 IP_Math Math Math
* 7 send
- 1 1 1N Math
cend
Figure 2-5
butoscke © urkonn =il Test Sequence Editor

The window of the test sequence editor consists of the menu bar, the toolbar, and the
actual processing field. If several processes are loaded simultaneously, then the test
sequence editor sets a tab for each sequence in between which they can be switched. The
tab for each family consists of the activation bar with the selection fields for the variant,
the process, and the system number, as well as the sequence list, the parameter inspector
and test step list.

21

2. Own testing process

Important:

When editing the sequence list or the test steps, note that the changes will affect all
variants in the family type, since all these variants share data. This is normally advanta-
geous since the modification is relative to all the variants, and must only be made once.
However, unintentional changes could cause another variant to be changed.

22

The sequence list and the test step list have an unlimited undo function. Edits can be
done and undone up until the last save.

Sequence List

The sequence list determines which steps are executed in a test and in what order. More
so, the sequence list can include more than one test sequence and test procedure of
more than one variant type. The steps in the sequence list that are to be included in the
actual test procedure depend on several filters. These filters are as follows: Type-code

of the variant type, sequence number, and system number. A line of the sequence list
can contain a comment, a Type code filter, a sequence step or an error. Comments are
ignored by the program and could be used to describe the procedures to be used.

A type code filter activates or deactivates subsequent sequence steps. They serve

as a criterion for selection, in other words, which variants are included in which
sequence steps. Included type code filters begin with an (*) and are labeled with a plus
sign in the first column. Excluded type code filters begin with a (*) and are marked with
a minus sign.

Ablaufschritte

A test sequence consists of numerous sequence steps.

“TwpCodefilter

Sy Abl | StepMr. Goto | Info

: auto created sequence, please edit
L AN Figure 2-6
L) 1 1 1N Math

Sequence steps
2end

The determined activity of the sequence step is specified in the first column. The
system number is used for filtering and determines on which system the step should be
executed. It must match the system number specified in the general setting. The system
number ,,0 is used for steps in all running systems.

2. Own testing process

The sequence number allows multiple testing procedures to be stored in one sequence
list. The uploading of the sequence is determined by the sequence number stored in
the sequence list. Included in the testing process are only those steps that have numbers
identical to those in the type list or whose sequence number is 0.

The test step number links the sequence list to the actual test steps. If the test step is
loaded into the test sequence, then the data of each test step is uploaded and the test
step is carried out to its corresponding point.

The jump type determines if and when, after running a test step, the test sequence can
exit and a jump can be executed.

Sprungarten:

N Never Never jump, Details for target will be ignored

P Dass Jump is good

F Fail Jump is bad or invalid

A Always Always jump, result irrelevant

C Calculated Interpreter step calculates if a jump had occurred

A test step number is assigned to the jump target. The jump type and the jump target
are separated by a hyphen and displayed in one column in the sequence list
(example: ,P - 10009).

Test steps
How a particular action is performed is defined in the test steps. The steps can be used

multiple times in a sequence. A test step consists of several fields, and their test step
number creates a link or a shortcut to the sequence list.

| Priifschiittparameter ld« 143
StepMr Step Art Mame Mame [englizch) o
; auto created parameter list, please edit Flgure 27
. TIPMath Mt Malh Test steps
s end
Fields of test step parameters:
StepNr: Establishes a connection to the sequence list
StepArt: Name of the interpreter step
Name/Surname: Description of the test step
(German/Englisch)
Unit: Unit of measurement value
NCP: Number of decimal places

23

2. Own testing process

24

Upper/

lower limit:
MDE:
FRepeat:
Frecover:
FContinue:

Name parameter x/
Value parameter x:

[l Exercise 2-3

Boundaries in which the measured value moves

Measurement data collection (on/off)

Number of repetitions of the test step for errors

Debugging, error handling

Determines whether the case will continue in the error

checking

Free usable pair of parameter name and value that is passed
on to the interpreter step.

Creating a test sequence

This exercise is to develop a testing procedure for the family type IMATH (from
Exercise 1-1 to 3). This should make it possible for the two variants 01 MATH and 02
MATH to obtain different sequences.

Step by step:
1.

Log on as administrator

Navigate from the toolbar> Password. Press the F4 function key or select
Administrator and type in >admin as the password. Confirm the password by
pressing Enter or the OK button

2. Navigate using the ® toolbar ® Type select ® and select the sequence of the
family type IMATH.

3. In order to adapt the sequence navigate using the ® toolbar ® Test edit
» Editor for test sequence. Add a new test step by selecting the sequence list then
navigating to the ® toolbar m New test step.

© Prafablauf und Parameter editieren B =
Tebelen Bearbeiten Suchen Andenngen Prufschvitarameter Extras Analyse
50 as |8 Sy L RIE
Fami: TMATH 1
Vatine: |02 Math- Zatlenvergiih <] Aol | 1 - Gefaul - pleose et [defaul]] e | 1= e
Ablaufite T 1 74 BRET) [ARE]
“TypCodefter Stephr | Step At Name Nae (ergisch)
Sys. [AbL | Stepht, | Gote Irfa auto created paramete fst, please edt
2010 crealed sequence, please it 1 1P Mah Math Maih
Ik Jend
o 1 1 TN Mah
send

Figure 2-8
New test step

4. Once the new step appears, assign it as 2 # in the StepNo column. Drag the test
step in the sequence list and hold the left mouse button to place where desired.

2. Own testing process

“TypCodefiter
Spz. Abl | StepMr. Gaoto | Info
: auto created sequence, please edit

- 7

e 1 1 1M Figure 2-9

[] 1 1 2N undefined StepMa Step 2
send

The + above the first test step symbolizes an included variant filter; the * stands
for all types. This row should always be listed at the top of the sequence list.

5. Now, through the help of the variant filter the sequence list has to be adjusted so
that step number 1 is only called upon in the variant 01MATH and step number
2 is only called upon in variant 02MATH. To add new variant filters select
the sequence list in the ® toolbar ® New variant filter. This filter should be
assigned as (excluded) and is done by inserting ® A02MATH in the row beneath
the + symbol.

*T ypCodefilter

Sys. Abl. | StepMr. Gota | Info
: auto created sequence. please
hrs

“02 Math

Figure 2-10

M ath
undefined StepMo New variant filter

Now all the steps listed under the filter for variant 01Math are active.

6. Step number 2 should only be active for the variant type 02MATH. It is possible
to use another excluded filter.

Tip:

For family types with several variants due to better readability

on to use inclusive (includierende) filter and the variations in the filter
to count for the following steps should be active.

Insert and then place the container on Variantenfi # symbol list % New Varian
tenfi older. Edit the filter with ® * 02 Math

*TypCodefilter
Sys. Abl | Stephir Goto | Info
; auta created sequence, please edit

7

= “D2 Math

e 1 1 1N Math q

702 Math Figure 2-11
e 11 2N Weralsich

Variant filter placement

;end

25

2. Own testing process

7. Now add a new test step to the test sequence list. Highlight this sequence list
via the ®toolbar and then choose ® New test step.

Edit the fields of the new test step:

StepNr »2
StepType » IP_Comparison
Name ®» Vergleich
Name » Comparison
Act. » Yes
Upper limit » 4
Lower limit » 0
StepMr Step At MNarne Marme [englizch] | AkL | Einheit| NKS | Obergrenze | Untergrenze Bild 2-12
:auto created parameter list, please edit
1 1P Math Math Math da rad 2 157 457 Testpara-
2 2 IP_Wergleioh Werdleich comparison da rad i 4 i

meters
send

8. Accept the changes by navigating to the ®toolbarm Save all. Close editor for

test sequence.

Interpreter

The interpreter (IP) executes interpreter steps (text files) that can be created and edited
by the user. As mentioned in the beginning of the book, the Interpreter language is
similar to PASCAL and BASIC. Included are procedures functions and libraries. The
data types used are essentially real and string types.

How it works:

Procedure:

A group of related source codes is known as a procedure. This allows repetitive tasks
to be edited in an effective, reusable way. This procedure can then be used repeatedly.
Procedures do not deliver results or return value.

Functions:
A function is a programming concept similar to the procedure, which delivers returns.
Existing functions can be used repeatedly.

Libraries:

A library is basically presents a collection of functions and procedures. If a library is
included in a source code, the programmer has access to its functions and procedures.

26

2. Own testing process

Otherwise, the programmer is forced to edit the required functions / procedures

himself.

Real data types:
The real data type is used for all numeric values (floating point numbers, whole num-
bers, logical and binary values).

String:
The string is used for strings.

Vector:

In the vector, a data type is implemented, the one-dimensional array of real numbers
represents. An array is a composite of several objects, data type, to

its various elements can be accessed.

String vector:
Provides a one-dimensional array of strings

ComObject:
The ComObject is a ,,pseudo-data type” to define a ComObject (ActiveX Object).

NetObjects:
NetObjects is a pseudo-type data to integrate .NET classes in C #, VBB
or Java.

Interpreter Editor

The interpreter editor is accessed from the # toolbar s IP Edit ® or via the
menu bar ® Edit & Interpreter steps edit. The interpreter editor is used to enter the
source code manually.

C [rnerpeeierschie B MATHIPS = i.‘-'-‘

pimpratemint Gewbeten Suchen Erashangm

AR 2 S ¢ X B X

L 3 P_MATHFS |
war
TEmTA LY
Anasp Figure 2-13
Pl e L 5 Interpreter Editor

27

2. Own testing process

28

nterpreter assistance

The interpreter assistance can be called upon via the function key ® F1. If you require
help for a function or procedure of a specific command, you can select the term and
press CTRL + F1. This key combination will jump directly to that command if it is
contained in the Help folder.

Debugger

The test manager has a debugger for the interpreter, which allows the source code to
work through instructions or blocks. The debugger also provides access to data (variab-
les and parameters) and allows it to be edited.

[l Exercise 2-4
Editing Interpreter Step

This exercise introduces the programming language and is therefore kept very simple.
You are now only an exercise away from your first own test run. The only thing lacking
is the editing of an interpreter step (IP-Step). In case you have questions about the
source or the syntax during this exercise, you can consult the advice of the interpreter
assistance.

The first own test sequence should generate a random number between 0 and 9. Fur-
thermore, it should be examined whether this random number is larger or smaller than
4 and then a response will take place accordingly.

Der erste eigene Priifablauf soll eine Zufallszahl zwischen 0 und 9 generieren. Weiter
soll gepriift werden, ob diese Zufallszahl grofSer oder kleiner als 4 ist und entsprechend
soll eine Ausgabe erfolgen.

Step by step:

1. Log on as administrator
Navigate from the toolbar #Password. Press the F4 function key or select
Administrator and type in ®admin as the password. Confirm the password by
pressing enter or the OK button.

2. Navigate using the ® toolbar = Type select ® and select the sequence of the
variant 02MATH.

3. Open the interpreter editor via # toolbar ® IP Edit and select in the interpreter
editor window via the toolbar ® a Blank Page document.

2. Own testing process

0 nterpraterschit (unbenannt)

Ittt gerseten St Erstchrgen
D BB 8 MRS @ @ B X

rtaramt |

Figure 2-14
Edit IP

lzis1 Einfugen

Save the step on the ® menu bar ® Interpreter step ® Save as. The name of
the interpreter step must be the same as it was specified in the sequence schedule:
o IP_Comparison. Enter the name and s Save.

Defining a variable:
Variables are defined before the actual step and fundamentally have the following
structure:

Syntax: IP_COMPARISON.IPS

var
//Variables are defined here

step
//Actual source code is edited here

end. //The source code ends here

Realize the structure in your blank document and define a variable following the
syntax:

A variable consists of an identifier and a type. The identifier defines the
name of the variable.

Syntax:

Identifier : type;

29

2. Own testing process

In your case the source code would be entered as follows:

var
Random Number : Real;

step

end.

You have now defined a variable with the name ‘random number’. Through this
name, you have access to the contents of the type ,real’ in the source code at
anytime.

5. Generate a random number:
To generate a random number use the following function:

Math.random (rRange: real) : real;

The name of the function is ,Math.Random* and the value of type ,real’, which
defines the range of random number, must be entered in brackets. The area
should be defined from 0 to 9. The second indication of ,real® gives the type the
return value that the function supplies. This random number should be transfer
red to the variable. Assignments will be implemented as follows:

For example:

Variable := wvalue;

or in our case:

Variable := function ();

Source code: IP_ COMPARISON.IPS

var
Random Number : Real;

step
Random Number = Math.random (9);
end.

f you feel the need to include any additional information in the source code for
traceability purposes, it can be realized through comments. Comments are prece
ded by / / and cannot be translated by the compiler.

30

2. Own testing process

Source Code:

/ / This is a comment!

6. Random number comparison:
A comparison can be implemented by a so-called If-Then command (If-Then-
Else). The ,If' sends a logical command that the interpreter responds to. After
,Then® a code is to be executed if the logical command delivers a ,true’
response, while ‘Else’ is the code for when the response is a ‘fail’. It should be
examined whether the random number is greater than, less than or equal to 4 and
the result should then be sent to the debug window.
Compound instructions are formed together from a sequence of instructions and
are then carried out in the order they were placed.
The partial information contained in the compound instructions is included by
the words ,begin‘ and ,end".
Source: IP_ COMPARISON.IPS
var
Random Number : Real;
step
Random Number = Math.random (9);
If random number> 4 Then begin
Debug.Show (0, ‘random =’ random number) ;
Debug.Show (0, ‘random number is greater than 4');
end
Else begin
Debug.Show (0, ‘random =’ random number) ;
Debug.Show (0, ‘random number is less than or equal to 4');
end;
end.
Tip:

If you want to know what the ‘Debug.show’ function does and how it is entered, then
select the function and press CTRL + F1 (for Help).

7.

In this step, the random number in the test sequence window should be dis
played. In addition, a short time delay should be inserted.

31

2. Own testing process

32

8.

Source:

var
Random Number : Real;

step

IP_ COMPARISON.IPS

[FFHAAK I FF AKX KK RGenerating a random NUMbE T * * x k& % %k ko & & %ok Kok & % x ok

Random Number := Math.Random (9);

[/ kK ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok Kk ok K ok ok

[xFHRAEx xR Ak xxFkQuery of size with issue:*** ks & xkkksxxxx

If random number > 4 Then begin

Debug.Show (0, 'random = ', random number) ;

Debug.Show (0, 'random number is greater than

end
else begin

Debug.Show (0, 'random = ', random number) ;

Debug.Show (0, 'random number is greater than

end;

4');

4');

[/ kK ok kK ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok Kk ok Kk ok

SetValue (random number) ; //Random number returned as a

DateTime.Delay (2000) ;

//measurement value

//Time delay of 2 sec

Repeat //This loop will continue re
peatedly
until StepContinue; //until the

//StepContinue-event occurs

end.

Save and close the interpreter step and start the process.

0 TestManager CE V15.146 - Typ: IMATH - Zahlenvergleich - 02 Math EC: 0.999 [
Piiischitausgaben | Ausgefiiite Pilfschiite Debugging Steplrio | Detugirto |
Meldungen Step Nr 2
Interpreterschitt IP_Vergleich lzuft Step Index 1
Zufalszahl =
Zufallszahl ist orciler alsich & IPS: IP_Vergieich

OGW, 4
UGW, 0
Zsit 085304
Prifdauer 1495
Durchlaus nia
Piiflings
L B
Aktueler Prifschit Messuert Einbeit
. @ses f A 1 fa] & Eehler:[hichandel ~
Made Stepr | Arwahl PEdt I Sttt m Debugger
D x] Y > = bid o
bty Abbrechen Step - Wiedsthalen EditFara. Debugger| Tools

Bild 2-15
Ablauf starten

Due of the limits, a ‘Fail’ is indicated by the test sequence because of the fact that
a random number greater than 4 was generated.

3. Screen objects

3. Screen objects

Screen displays are initialized via the so-called screen objects. This category includes
buttons, bitmaps, curves, dialogues, editing (input fields) frames, labels, meter, etc. ..
Such objects can be initialized using the following syntax:

Screen.Objektname, example:

Screen.Dialog

These objects have procedures that enable them, for example, to activate, conceal,
indicate, etc..

Example:

Screen.Dialog.Show

More information on the syntax can be found via the help of the interpreter.

Before using the screen objects, all objects must be hidden and reset to default value. If
you want to present objects, you must first open and show a user-definable window. The
following Syntax must be edited prior to use of screen objects:

Screen.ClrScr; //Hide objects and reset to default values
Screen. Show; //Open and view user definable window

[l Exercise 3-1
Screen-Objekte

This exercise is aimed at dealing with screen objects. Creating a process in which two
buttons are displayed on the test window, is the objective of this exercise. These are la-
beled as ,Pass‘ and ,Fail‘. With the help of these buttons, the test results may be affected
as follows: When pressing the button reveals a pass, then the test results passed. When it
reveals a ,fail’, the test results should be adjusted so that ‘fail” applies.

Step by step:

1. Logon as administrator
Navigate from the # toolbar s Password. Press the F4 function key or select
Administrator and type in >admin as the password. Confirm the password by
pressing enter or the OK button.

33

3. Screen objects

34

Create a new family type with the name ® 8MONITOR and a variant ® 01
Button. Set it to ‘active’ and enter a name for the Type information
(for example: 2 Button).

Select the variant of step 2 in the toolbar TypeSelect.

Edit a step in the process and test sequence parameter list. In order to be able

to use a new interpreter step, type in a new name in the IP File column (example:
IP_Button). Apply the upper and lower limits at a certain value, in order to influ
ence the test results

S Prifablauf und Parameter editieren (=] [
Tobelln | earbeten Suchen Anderungen Prufschtiparameter Extras _ dnayse
SEO S B A X @& ® Sy SRIE
Famite: SMONITOR |
| vaiante: [018uton - 28uton v|| Ableut |1 defoult - please edil [defaul] o] 4 systemii: [1=+
bl (Gesnder] 1374 BRET) 16:273
“TypCodeiter Stephi | StepAt | Name | Name (englsch) | AKL Eihet NKS | Obergrerae | Unteigenze
Sys. [AbL Stepli Goto | Info auto created paamete s, plase edt |
 auto created sequence, please edt 1 1P Bulon Bution Button i [1f]
o) send
of 1 1 AN Buton

send

Figure 3-1

Screen objects

AutoCheck: ~ unknown Kl

Edit interpreter step:

Edit your source code by defining a variable that can give you the value of
the last pressed buttons and then initiate the monitor. Define yourself in a
‘repeat until’ loop of the two buttons and retrieve the information of which
button was pressed. The loop can only then be abandoned when one of the
buttons has been activated.

Depending on the button, customize the measured value of the process
(,Pass’ or ,Fail‘) in order to influence the result.

Source code: IP_BUTTON.IPS

var
Button : Real;

step

//*****************Initialisierung Screen:**********************
Screen.SetTab (1) ;
Screen.ClrScr;

Screen. Show;
//***

w weiter geht s auf der niichsten Seite

3. Screen objects

//****x*x*xx*x*xTo0p to repeat with value adjustment:******x*
repeat

Screen.Button.Show(1, 100, 100, 'Pass', 100, 1, 24);
Screen.Button.Show(2, 300, 100, 'Fail', 100, 1, 24);

Button := Screen.LastButton;
If Button = 1 Then
begin
SetValue (1) ;
end;
If Button = 2 Then
begin
SetValue (100) ;
end;

GlobalVar.Set ('gButton', Button);

until Button > 0;

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok Kk ok Kk ok

repeat
DateTime.Delay (300) ;
until StepContinue;
Screen.ClrScr;

end.

The loop repeat...until StepContinue is allowed in the Step by Step — mode,
so that the source code of the loop is repeated until the jump command to the
next step (via the Step + button) takes place.

35

4. Global variables

4. Global variables

Variables that are defined and initialized in a step are lost at the end of the step. Howe-
ver, it is necessary in many cases that variables and their values of one or more steps be
retained until the end of the sequence. Global variables have this property. Your life goes
beyond the Step out and end up can be defined to the system end.

These global variables can be defined by the procedure ® GlobalVar.Set and retrieved
by the function ® GlobalVar.Get. They must also have a clear identifier, like normal
variables.

Variables, values and comments can be viewed and edited via the # menu bar ® Tools

= Global Data.

Converting data types

The test manager provides functions to convert data types. These are necessary (for
example) so that return values from functions that are in a fixed data type can be con-
verted. The Val function converts the text from strings into a real data type (a numerical
value). It is also possible to convert a real value to a string via the Str function.

Programming made easy

It is recommended that when editing Interpreter steps, the variant for which the
Interpreter step is edited, should be selected and carried out in the SBS-mode. If an
IP-Step is not already created with the appropriate name, the interpreter editor will
be opened by a pathway where the IP step is located in. The source code can be edited
directly in this window. When the editor is closed the code is directly executed. In the
case of an error, the programmer displays it directly in the editor. The error line in the
interpreter editor is displayed in red and the status bar displays the error code
description.

It is possible that the error is already in the source code, this is for example the case
when using an undefined variable. The error can be solved instantly that way and the
improved source code can be rerun. That way, the accuracy of the code and the behavior
of the program can be reviewed. The source code can be edited and verified

by programmer-friendly steps.

37

4. Global variables

Note:

Another peculiarity of the interpreter is that some errors are first detected at run-time.
The syntax in the editor is checked as 'OK'. In an actual start of the test step, the func-
tions are in fact executed and type similarity is controlled.

38

During the exercises you will be given step by step functions and procedures that you
have probably not been confronted by before. Should the syntax or the effects of its
commands be unclear, see the Interpreter help for advice. This should be your standard
operating procedure as it enables you to learn how to operate the TestManager and
create interpreter steps independently.

[l Exercise 4-1
Gambling

In this exercise, a new sequence (Gambling) is created. This will consist of 3 test steps
with 4 user-entered digits (0-9) compared with 4 program-generated random numbers.
The result is expressed as a percentage and will reflect the similarities of the numbers.

The names of the test steps are:
* Entry of Numbers

* Random

e Compare

Mit den zugehérigen Interpreterschritten:
e [P_Entry

¢ [P Random

e [P_Compare

Step by step:

1. Log on as administrator
Navigate from the # toolbar m Password. Press the F4 function key or select
Administrator and type in admin as the password. Confirm the password by
pressing enter or the OK button.

2. Insert a new family type with the name ® 7GAMBLING with the variant> 01
Random number, and set this to ® active and save.

3. Edit the test procedure with the above-mentioned three steps and define me
aningful measurement limits. Note that the result should be displayed as a
percentage.

10.

11.

4. Global variables

| Ablaufliste Id« 1 /6 [Akt: 3]
*TypCodefilter

Sys. Abl | StepNr.|Gaoto | Info
; auto created sequence, please edit

* |7
L] 1 1 1M Eingabe von Zahlen
e 1 1 2N Zufall Figure 4-1
[] 1 1 3N Wergleich .
E Sequence List
send
Prifschrittparameter Idw 175
StepNr Step At Hame Wame [englisch] Akt Einheil NKS | Obergrenze | Uniergienze
+auto created parameter lit. please edit .
1 1 IP_Eingabe Eingabe von Zahlen Ja 0 1 1 Figure 4-2
2 2 IP_Zufal Zutall Ja o 1 1 .
3 % IP_ergleichen Vergleich Ja % 0 100 5 Test Step List

;s end
Choose the variant listed in step 2 via “Typeselect’ or for shortcut press (F2)

Editing the first interpreter step:

Define the variables of the real-type, by allocating and assigning the numbers
that the user entered. Another real-type variable will function as a counter and
must therefore also be defined.

Assign an initial value to the counter (0 is offered) and initialize the screen.
Create an entry window on the test step display window and activate it.

Edit a ‘repeat until’ loop that, with the help of the counter, repeats itself so often
until the value reaches an initial value of + 4. The purpose of this loop is that its
content is repeated until the counter reaches its final value. Inside the loop, the
four user-numbers are read and passed on to the variable.

By using the help of an If-Then instruction, ask whether or not a valid character
was entered into the input field during the ‘repeat until’ loop. If this is the case,
the display button can be confirmed and activated.

Define another If-Then assignment inside the loop in order to check if a button
is activated. During this assignment, you can use the counter as a selector, with
the help of a case instruction, in order to assign each number to the variables.
Then, reactivate the input field and empty it. The button will be hidden again. It
is important that you increment the counter.

Define the numbers entered as global variables and set the measurement value.

39

4. Global variables

40

Source code:

var
Numberl : Real;
Number2 : Real;
Number3 : Real;
Number4 : Real;
Counter : Real;
step
//*****************Screen initialize:***********************
Screen.SetTab (1) ; //focus on Priufschrittausgabe

Screen.ClrScr;

Screen. Show;
//***

//*¥***x*x*x*x*x*create and activate an entry window:*****%%k%k%x*
Screen.Edit.Setup (1, 1, '0..9', 0); //input window
Screen.Edit.Show (1, 100, 100, 50);

Screen.Edit.Activate (1);
//***

[FFEK KK KKk kkkkkkkkxkkkGot counter to 0 Fkxkkkokkokkkokkkokkkkkokkx

Counter := 0;
//***

repeat //repeat until counter is 4!
Screen.Label.Show (1, 100, 30, ''Please enter a number:');
If Screen.Edit.GetText(1) <> '' Then //Query whether
character
was entered
begin

Screen.Button.Show(1, 200, 100, 'Ok', 100, 1, 24);
Screen.Button.Activate (1);
end;

If Screen.LastButton =1 Then //If the button
is clicked:
begin

//*¥***x*xxxxx*xSelection according to counter reading:*******kkk%x*
Case counter Of

0 : numberl := Val (Screen.Edit.GetText(1),100);

1 : number2 := Val (Screen.Edit.GetText(1),100);

2 : Number3 := Val (Screen.Edit.GetText(1),100);

3 : Number4 := Val (Screen.Edit.GetText(1),100);
end;

/] %k Kk kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok ok ok K ok ok ok ok ok K ok Kk ok K ok

/[**xxxFxxxxxxx*kIncrement counter and hide button:****x*x*x
Screen.Edit.Activate (1);
Screen.Edit.SetText (1, '');
Screen.Button.Hide (1);
Zaehler := Counter + 1;

= continue to the next page

IP_ENTRY.IPS

4. Global variables

/1

end;
until (counter = 4);

//**************Label and hide input field:***************
Screen.Label .Hide (1);
Screen.Edit.Hide (1) ;

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok Kk ok Kk ok

//*****************Define Global Variables:****************

GlobalVar.Set ('gnumberl', numberl);//Save figures in
global variables

GlobalVar.Set ('gnumber2', number2);

GlobalVar.Set ('gnumber3', number3);

GlobalVar.Set ('gnumber4', numberd);

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok ok ok ok

SetValue (1) ; //set measurement value

repeat
until StepContinue;

Screen.ClrScr; //Clear screen
end.

12. IP_Random edit:
Generate 4 random numbers and store them in the Global Variables.

Source code: IP_RANDOM.IPS
var
Random Number 1 Real;
Random Number 2 Real;
Random Number 3 Real;
Random Number 4 Real;
step
//****************Zufallszahlen generieren:*********************
Random Number 1 := Math.Random (10);
Random Number 2 := Math.Random (10);
Random Number 3 := Math.Random (10);
Random Number 4 := Math.Random (10);

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok K ok ok

//***************Globale variablen Setzen:**********************
GlobalVar.Set ('gRandom Number 1', Random Number 1) ;
GlobalVar.Set ('gRandom Number 2', Random Number 2);
GlobalVar.Set ('gRandom Number 3', Random Number 3);
GlobalVar.Set ('gRandom Number 4', Random Number 4);

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok K ok ok ok ok ok

SetValue (1);

= continue to the next page

41

4. Global variables

repeat
until StepContinue;
end.

Tip:
Be careful when naming global and normal variables so that no misunderstandings
occur and the syntax is understandable.

13. Edit IP_Comparison:
With the help of If-Then instructions, check whether there is consensus between
the inserted numbers and the random numbers. If necessary, adjust the result
accordingly within the instructions. Enter the numbers for the user on the test
step display window.

Source code: IP_Comparison.IPS

var
Result : Real;

step
Result := 0;

//***x*xxxxxx*xCompare figures and adjust results:****x**xxxxx
If GlobalVar.Get ('gnumberl') = GlobalVar.Get
('gRandom Numberl'l')

Then
begin

Ergebnis := Ergebnis + 25;
end;

If GlobalVar.Get ('gZahl2') = GlobalVar.Get ('gZufallszahl2')
Then
begin
Ergebnis := Ergebnis + 25;
end;

If GlobalVar.Get ('gZahl3') = GlobalVar.Get ('gZufallszahl3')
Then
begin
Ergebnis := Ergebnis + 25;
end;

If GlobalVar.Get ('gZahl4') = GlobalVar.Get ('gZufallszahl4')
Then
begin
Ergebnis := Ergebnis + 25;
end;
//***
Screen.SetTab (1);
Screen.ClrScr;
Screen. Show;

= continue to the next page

42

[/ *¥*KkKkkxkkxkkkkxk*k*Tgsue of numbers

4. Global variables

ckkkkhkkhkkhkkhkkkkkkkkkokkkkkkk

Screen.Label.Show (1, 100, 30, ''Your Numbers:');
Screen.Label.Show (2, 100, 60, str (GlobalVar.Get
('gNumber'))) ;

Screen.Label.Show (3, 100, 90, str (GlobalVar.Get
('gNumber2'))) ;

Screen.Label.Show (4, 100, 120, str (GlobalVar.Get
('"gNumber3'))) ;

Screen.Label.Show (5, 100, 150, str (GlobalVar.Get
('gNumber4'))) ;

Screen.Label.Show (6, 250, 30, 'random numbers':');
Screen.Label.Show (7, 250, 60, str (GlobalVar.Get
('gRandom number'l')));

Screen.Label.Show (8, 250, 90, str (GlobalVar.Get
('gRandom number2'))) ;

Screen.Label.Show (9, 250, 120, str (GlobalVar.Get
('gRandom number3'))) ;

Screen.Label.Show (10, 250, 150, str (GlobalVar.Get

('gRandom numberd'))) ;

[/ kK ok kK ok ok ok ok ok ok ok ok ok K ok ko ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok K ok ok ok ok ok

end.

14.

Screen.SetTab
SetValue

(1)
(result) ;

repeat

DateTime.Delay (2000

until StepContinue;

Screen.ClrScr;

7

Save your edited data and restart the process.

#° TestManager CE V15,146 - Typ: TGLUECKSPIEL - Zufallszahl - 01 Zufallszahl EC: 0,999

[

Prilfschiitausgaben

Ausgefihnt Prifschite | Debugging

Bitte geben Sie eine Zahl ein:

R O |

Stepirfo | Debugiro|

Step N1
Step Index:
1PS:

06w
UG

Zeit
Priiidauier
Durchlaut:

IP_Eingobe

10

1
1

1

1
4638
187

Piiiinge
XY

Altueler Priifschiit:

<D

=t

(ses
Mode

Messwert

Einhei:

Figure 4-3

A = & Fehler [behandeln ~

Stepr Anahl PEdt o

x] A o 5
Abbrechen Step- \wisderholen Edit Para, Debugger| Took

Enter numbers

43

4. Global variables

44

% TestManager CE V15.1.46 - Typ: 7TGLUECKSPIEL - Zufallszahl - 01 Zufallszah! EC: 0.980

e

Fiiifschiitausgaben | Ausgefibrte Prifschiite | Debugging Stepirfo | Debug I |
Step . E
Inre Zahlen: Zufallszahlen: Step Indes El
1Ps: | IP_vergkichen
1 2 oG 100
6 6 UGw: 5
Zeit 105135
0 3
Prifdauer 2045
7 1 Durchlaut na
Piifinge
XY
Aldueler Pilfschit Messwerl Einheit
@ses f A I = Eehier. [behandeln ~
Mode Step+ Arwah IPEdH I Stattin Debugger
= [=) g &
ke Abbrechen Step Wiederholen Edit Para Debugger| Tooks

Bild 4-4

Comparison

5. Tools

5. Tools

As mentioned in the beginning of the book, TestManager contains a variety of functions
and tools. By navigating to the ® menu bar ®Tools you can invoke the activated tools
in the basic settings. These tools enable the user to obtain information and carry out
settings and can also be used outside of the sequences.

Under the tools menu, you will find various monitors, such as CAN-, LIN- and
IC-monitors and various ME-(Meilhaus) monitors. Signals are sent and received with
these monitors. Setting possibilities of all kinds are also possible. These tools can also be
called upon during sequences via the function ® Action.Trigger.

[l Exercise 5-1
Using Tools

This exercise deals with the application of tools. As an example, this exercise will
illustrate how a curve monitor is used. Data for three curves should be passed on to the
monitor. The mathematical functions sine, cosine and sine*cosine should be the result
displayed on the curve monitor.

Step by step:

1. Log on as administrator
Navigate from the stoolbar m Password. Press the F4 function key or select
Administrator and type in >admin as the password. Confirm the password by
pressing enter or the OK button.

2. Insert a new family type with the name % 9CURVEMONITOR with the
variant ® 01 SineCosine, and set this variant to ® active and save.

3. Select the created family type via ® Typeselect.

4. Test procedure:

Edit a test sequence with a test step # IP_SINUS, define upper and lower limits
and set the step to active.

| &blaufliste Idw: 1/ 4 [Akt 1)

“TypCodefilter
Syz. | Abl | Stephr. Gato | Info
: auto created sequence. pleaze edit
LIS
1 1 TH Furvenrmonitar
“end Test Sequence List

Figure 5-1

45

5. Tools

46

19c1/5
Stephl Step At Name Name (englich | AKL | Einheit| MKS | Obergrenze | Untergrenze
; auto created parameter list, please edit A
1 1IP_Eingsbe Eingabe vor Zshlen Ja 0 1 1 Bild 5-2
2 2 IP_Zutal Zutal Ja 0 1 1
3 3 IP_Vergleichen Vergleich Ja % 0 100 s Test-Step Parameter
- ond

Interpreter step:

Set up three variables of type Vector. These vectors serve as the function values
of sine, cosine and sine*cosine. Furthermore, one variable, which should be of
real-type, is needed for counting. This should enable the function values in single
cells of the vector to be written (similar to the known ‘data-type array’).

Before the cells of the vectors are described, it should be ensured that all cells
have no content. That way these vectors have a length* of 0. This happens
through the syntax:

Example: Curvel: = []

Create a loop that enables you to describe the cells of the vector individually.
For this purpose, a For-To-Do loop is available, that enables the vectors to be
described with a variety of values. Make sure that one cell of the vector is ,
Switched on" after each cycle.

Source code: IP_SINUS.IPS
For Counter := 1 To 1000 Step 1 Do begin
Curve := Curve + [(Math.Sin(counter / 100)) 1;
end;
[(Math.Sin (counter / 100))] describes the current cell with the

sine value from the counter / 100. The brackets [] represent the
beginning and the end of the cell. With the syntax Curvel:= Curvel
+ []; the vector is overwritten by itself and an additional (new)

cell []. The length of the vector is thus increased by one

element.

Repeat this approach of steps 6 and 7 for the cosine and

sine*cosine variants.

Settings of the curve monitor:

The axes of the curve monitor can be named with the procedure ® Curve.Scale.
SetText. The axis name for the Volt of the Y-axis and measuring points for the
x-axis are available. You can insert the curve names into the curve monitor with
the procedure ® Curve.Name and configure the monitor via # Curve.Setup.

5. Tools

View of the curves:

The curves can be stated in the curve monitor with the help of the

function wAction. Trigger. For this purpose, the ® Action-Code of the curve
monitor (2020) is needed. Set the measurement value according to the value
which you defined.

Quellcode: [P_SINUS.IPS
var
Curvel : Vector;
Curve2 : Vector;
Curve3 : Vector;

Counter : Real;
step

[/ xRk xRk xkkkkkkkFi]] vectors With values:*x %k xkkkkk &k kkkxkkx*k

Curvel :=[];
For Counter := 1 To 1000 Step 1 Do begin
Curvel := Curvel + [(Math.Sin(counter / 100))];
end;
Curve2 :=[1];
For counter := 1 To 1000 Step 1 Do begin
Curve2 := Curve2 + [Math.Cos (counter / 100)];
end;
Curve3 :=[1];
For counter := 1 To 1000 Step 1 Do begin
Curve3 := Curve3 + ([Math.Sin (counter / 100)*Math.Cos
(counter / 100)]);
end;

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok ok ok ok K ok K ok ok Kk ok

[/ F**xxFkFxxxx*kkpxis labels and graph names define:** * %%k kk x %k kx x %
Curve.Scale.SetText (1, 1, 'volts');
Curve.Scale.SetText (1, 0, 'data points');

Curve.Name(1, 'curve 1', 'curve 2','curve 3');
//***

[/ xFxr Kk xkkxKkkkkk*EJition OF the CULVES:** %k k% kkkkkokkkkkkkxkkkkk

Curve.Setup (1, 1000, curvel, curve2, curve3);
Action.Trigger (2020);

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok K ok ok K ok ok ok ok ok K ok K ok ok Kk ok

SetValue (1);

repeat
until StepContinue;

end.

47

5. Tools

48

% Kurven-Monitor

Dot fuven Anzege
| @ F o[% b Y -
Abszisse[ws] Ordinate [V] Kuve

— Kurve 1 — Kurve 2 — Furve 3

/ \
SN

lock 0 100 200 300

»n‘

0 <00
Wesspurkte.

Bild 5-3
Output of Curve Monitor

6. Files

6. Files

The TestManager provides the ability to create, access, and edit files. Different functions
and procedures can be called upon, for example, the reading and writing in files. To
activate these functions the following syntax must be used:

® File. (Function or procedure)

Important for the functions and procedures for files is to note whether or not the file
should be opened or closed for execution. For example, a file must be opened before it
is read or edited.

[l Exercise 6-1
Reading and Writing Files

This exercise focuses on reading and writing files. This sequence should have a user-
entered text placed into a text document (Ending.txt) and then read out again. The text
should be displayed in the test step display window.

Step by step:
1. Log on as administrator Navigate from the # toolbar ® Password. Press the F4
function key or select Administrator and type in >admin

2. Create a new family type with a variant and set it to active.

Example: Family Type Name: 11PRACTICE9
Code Type: 01Txt file
Information Type: Read and Write

Save the edited data.

3. Choose the variant of the new family type in step 2 via # Typeselect.

4. Edit the sequence list and the test step parameter via s Test Edit. One step is
required for the sequence. Choose a name for the Step Type

(example: IP_TXTFILE) and define the upper and lower limits,
then save your data.

49

6. Files

50

| Ablaufliste I 1/ 4 [Bkk 1]
“TypCodefilker
Sys. Abl | Stephr Gata |Info
: auto created sequence. please edit .
- Figure 6-1
® 1 1 1H Lesen + Schreiben
send

Sequence List

Priifschitparameter e 1/3

StepNr | Step At HName Name (engisch] Akt | Einheit| NKS| Obergrenze | Unlergrenze

+auta created parameter st please edt 1 Figure 6-2
1 IP_THTFILE Lesen + Schieben ead + wite i o 1 Test Step Parameter

send

Start the sequence and edit the interpreter step. Use an input box, and for
confirmation of the input, a button which allows the entered text in a variable to
be passed. Save the text into a variable.

With the procedure ® File.SetFileName () a file can be created. Name the file
® ,Practice9.txt‘ and then open the file with the help of the
procedure m File.Open ().

Syntax:

File.SetFileName (1, 'Ubung9.txt');
File.Open (1);

Wrrite the text in the file with the help of your created variables.

Syntax:

File.Write (1, Variable);

In order to read the text, you have to position the file pointer back to the
beginning of the file. The file pointer can be set at any location of the file via
the procedure ® File.Seek (). The content of the file can be read via

the function ® File. Read () and can be passed directly to a variable.

After you have read the file, you should close it again via the

command = File.Close ().

Syntax:

File.Seek (1,0); //set file pointer to the beginning
Content := File.Read (1, 'EOF',100);
File.Close (1);

Enter the contents of the files in the test step display window and assign a lag
period of approximately three seconds to allow the user to have time to register
the output.

6. Files

10. Delete the file with = File.Delete and set the measured value within the
boundaries you have defined.

Syntax:

File.Delete (1); //Delete the file!!!

The file should be deleted so that no implications arise when other applications
and the input of shorter texts is applied

Tip:
Simply try it out, with and without deleting the file.

Source code: IP_TXTFILE.IPS

var
Text : String;
Contents: String;

step
//**********************Screen initialize:**********************
Screen.SetTab (1);
Screen.ClrScr;
Screen. Show;
//**

[e tistsias e s N Ganare it OUEPUE enel Lmpuie fHEIlElg i i
Screen.Label.Show (1, 30, 30, '’Please enter your text:');
Screen.Edit.Setup (1, 100,'' ,0);

Screen.Edit.Show (1, 30, 60, 400);

Screen.Edit.Activate (1);
//**

//***********Repeat until button is pressed: % xxkkk & xkkokkxxxkokk

repeat
If Screen.Edit.GetText(1) <> ,' Then
begin
Screen.Button.Show (1, 480, 60, 'OK',70 ,1 , 24);
end;

until Screen.LastButton =1;
//**

[] xFFxF I x A K KR FFNrIite text dn flle s * ok x Kk ks ok ok ok ok ok ok ok k ok ok ok ok Kk ok ok ok ok Kk Kk

Text := Screen.Edit.GetText (1);
File.SetFileName (1, 'Practice9.txt');

File.Open (1);
File.Write (1, text);

w continue to the next page

51

6. Files

File.Seek (1,0); //set file pointer at the beginning
Content := File.Read (1, 'EOF',100);
File.Close (1);

/] %k K ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok Kk ok Kk ok

//******************Output- dhkkhkhkhkhhhkhkrhhhkrhhhkrhhkhkkhhkhkxhkhkkxkhkhkkxk

Screen.Label.Show (2, 30, 200, 'Text aus File:');
Screen.Label.Show (3, 30, 230, Inhalt);

/] %k K ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok K ok ok K ok ok K ok ok K ok Kk ok Kk ok

DateTime.Delay (3000);

repeat
until StepContinue;

File.Delete (1); //Delete the file!!!!
SetValue (1);

end.

11. Save the interpreter step and restart the sequence in SBSModus. If you edited
the deletion of the file after the ,repeat until StepContinue’ Loop, you can still
see the text document after you have entered your text and confirmed.

This requires you to navigate to Windows Explorer into the ® Directory where
the TestManager was installed. The file is located in the folder # Data Type

» Type_ (family type name that you assigned). That way you can confirm if the
letter was successfully transferred into the file.

© TestManager CE V15.146 - Typ: 11UEBUNG - Schreiben und lesen - 01Txt-Fie EC: 0.999 | & oo

Pifschitausgaben | Ausgefifte Pifschite | Debugging Stplrfo | Debugint |
stept 1
StopIndes 1
Ps | RIXIFLE
Dies ist ein Testtre o6w 1
uaw i
et a0
Pitdar | 4085

Bitte geben Sie Ihren Text ein:

Durchlaut a

Piifinge
rat

Aktueler Prfschii: Messwet: Einheit:

. @ s8s A =1 =] Feher[behandein ~ .
Made Slep+ At PEd |- Figure 6-3

] A [=] g kS A
{[E,R Abbrechen Step Widerholen EdiPaa | Debugge| Tods Read + Write

52

6. Files

0 TestManager CE V15.1.46 - Typ: 11UEBUNGO - Schreiben und lesen - 01T¢t-Fie EC: 0.999 o
Pifschitausgaben | Ausgefie Prfschite | Debugging | Stepints | Debugint |
Step Ir. 1
Bitte geben Sie Ihren Text ein: Sfep itz 1
1Ps: 1P_TXTFILE
[pies ist ein Testrre 06w]

UGW: 1
Zsit 11:44:30
Priidauer: 7065

Durchlaut nia

Text aus File:

Dies ist ein Test1y

Piifinge
ral

Aktuelle Prifschiit; Messwett Einhei;

Fehler [behandn +.

B o A o 77 Figure 6-4

MY X} A [+ =) g A
mn Q Abbechen Step Wedshlen EdtFaa | Debugge Read + Write

k)
Took

[l Exercise 6-2
Writing, reading, renaming of files and introduction of the date-time
functions.

This exercise shows another example in dealing with files. The task will be to create a se-
quence in which the user will be prompted to enter a user name. This username should
be documented with the current date and time of entry.

In the second step, both the current user and previous user should be documented in a
second text and saved with the current date and time.

In the third step, the text document with the previous user should be overwritten by the
text documents with the current user. This can be realized the by renaming the files.

Step by step:

1. Log on as administrator
Navigate from the toolbar Password. Press the F4 function key or select
Administrator and type in admin

2. Create a new family type with a variant, set it to active, and save the edited data.
Example: Family Type: 12PRACTICE10
Code Type: 01File

Information Type: txt file

3. Choose the variant of the new family type in step 2 via ® Typeselect.

53

6. Files

54

4.

10.

Create three steps in the sequence list and test step parameter list. Use three new
step types, define names and limits for these steps, and save your data.

Ablaufliste Ids: 1/ B Ak 3)
*TypCadefilter
Sys. | Abl | StepMr. Gota | Info
; auto created sequence, please edit

* 7
1 1 1N Teutfie schreiben .
11 2N Tesfielesen HauEhes
1 1 3N Textfile umbenennen Sequence List
send

Stephit | Stepdnt Name Name (englischl &KL Einheit| NKS | Obergrerze um:;;n;: Figure 6-6

e e e w o . TestStepPara-

2 2 IP_GETUSER Tentie lesen readie Ja 0 1 1 meters

3 3IPFILE2 Textile umbenennen rename fie Ja 0 1 1
send

Choose the variant of the new family type in step 3 via # Typeselect and begin
the sequence.

Edit the first interpreter step:

Insert variables of type Real in order to save the date (year, month and day) and
time (hours, minutes and seconds). A variable of type String is also required in
order to deposit the user's name to.

Create an input field in the test step display window and activate it. Call upon
type label in this window to enter the username.

Place a button, with which an input can be confirmed, as soon as a character has
been entered.

Save the user name in the applied variables.

Read the current system time with the function # DateTime.Time (). With this
function, the return value can be transferred directly to the specified variables.

Syntax:

DateTime.Time (hours, minutes, seconds);

In this case, hours, minutes and seconds are the variables that the current time
will be assigned to.

11.

12.

13.

14.

6. Files

11. The function ® DateTime.Date () delivers the current system date and
transfers them to the variables (as in Step 9).

Syntax:

DateTime.Date (year, month, day);
Now open the saved text document in which the current user should be stored.
With help of the procedure File.WriteLn () you can write information in the

text document line by line. With the help of this procedure write the user, the
date and the time each in one line.

Syntax:
File.WritelLn (1, 'User: ' + Anwender) ;
File.Writeln (1, 'Date: ' + Str (Jahr) + '-' + Str (Monat) +
'-'"+Str (Tag)):
File.WritelLn (1, 'Time: '+Str (Stunden) + ':' + Str (Minuten) +

':' + Str (Sekunden));

Close the text document and set the measurement value.

Quellcode des ersten Interpreterschritts: [P_FILES.IPS
var
User : String;
Hours : Real;
Minutes : Real;
Seconds : Real;
Year : Real;
Month : Real;
Day : Real;
step

//***************Initialize screen:*****’”********************
Screen.SetTab (1);
Screen.ClrScr;

Screen. Show;
//***

[/ *¥***Kkx*kkx**x*Tgsue the user TEQUEST 1 X% * Kk &k ko ok Xk ko ok K KKKk K kK

Screen.Edit.Setup (1, 20,'' ,0);
Screen.Edit.Show (1, 200, 100, 150);

Screen.Edit.Activate (1);
//***

//*************Benutzeraufforderung ausgeben:******************
Screen.Label.Show (1, 20, 105, '’‘Enter user name:');

w continue to the next page

55

6. Files

15.

16.

56

[/ kK ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok ok ok K ok ok Kk ok

[[FRERExRE kR E*Repeat until button is) pressedis**xExExkxEx

repeat
If Screen.Edit.GetText(1) <> ,“ Then
begin
Screen.Button.Show (1, 380, 100, 'OK',70 ,1 , 24);
end;
until Screen.LastButton = 1;

[/ kK ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok K ok ok Kk ok

//**************Retrieve text, date and time:*******************
User:= Screen.Edit.GetText (1);

DateTime.Time (Hours, Minutes, Seconds);
DateTime.Date (Year, Month, Day);

[/ kK ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok K ok ok Kk ok

//***************Write into File line by line*****************
File.SetFileName (1, 'User_ Current.txt’);
File.Open (1);

File.WriteLn (1, 'User: ' + User);

File.WriteLn (1, 'Date: ' + Str (Year) + '-' + Str (Month) +
'-' + Str (Day)):

File.WriteLn (1, 'Time: ' + Str (Hours) + ':' + Str
(Minutes) + ':' + Str (Seconds));

File.Close (1);
//***
SetValue (1);

repeat
until StepContinue;

end.

Edit the second interpreter step:
Create three variables of type String, in order to be able to allocate
the read user data.

Open the text document of the current user and enter the data into the variables.

Syntax:

Userdatenl := File.ReadLn (1);
Userdaten2 File.ReadLn (1);
Userdaten3 := File.ReadLn (1);

17.

18.

19.

20.

6. Files

Close the document and enter the user data in the test step display window.

Open the document from the previous user, interpret the data line by line, and
place it in the variables provided.

Close the document and submit the data. Enter the measurement value and a
delay time of approximately 2-4 seconds to give the user time to read the given
results.

Clear the screen.

Source code of the second Interpreter step: I[P_GETUSER.IPS

var
Userdatal : String;
Userdata2 : String;
Userdata3 : String;

step

//******************File éffnen:********************************
File.SetFileName (1, 'User_ current.txt’);
File.Open (1);

/] %K K kK ok ok ok ok K ok ok ok ok ok Kk ok K ok ok K ok ok K ok ok K ok ok ok ok Kk ok K ok ok K ok ok ok ok Kk ok K ok ok K ok ok ok Kk ok Kk ok

//****************Read line by line:***************************
Userdatal := File.ReadLn (1);
Userdata2 := File.Readln (1);
Userdata3 File.ReadLn (1);

/] % kK kK ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok Kk ok K ok ok K ok ok K ok ok K ok Kk ok K ok ok ok ok ok K ok Kk ok K ok

[] KFK Ak kK k ok kk ok kkkk kK Q] Og@ fIle s KKk Kk Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok k ok Kk ok

File.Close (1);

/] %k Kk kK ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok Kk ok Kk ok K ok K ok ok ok ok ok K ok ok ok ok ok K ok Kk ok K ok

//******************Initialize screen:**********************
Screen.SetTab (1);
Screen.ClrScr;

Screen. Show;
//***

//******************Output data:*******************************
Screen.Label.Show (4, 100, 40, 'Current users:');
Screen.Label.Show (1, 100, 70, Userdatal);
Screen.Label.Show (2, 100, 100, Userdata2);
Screen.Label.Show (3, 100, 130, Userdata3);

/] %k K kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok K ok ok ok ok ok K ok Kk ok K ok

[FHERHRKK KKK KKK IR KKXKT] T @ OP@IL s K XK Kok k& kK ok ok & kK ok ok K KKK K K KKK K K X

File.SetFileName (1, 'User_before.txt');
File.Open (1);

/] %k K kK ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok Kk ok K ok

w continue to the next page

57

6. Files

[/ xFHRExx xRk xxxkkRead line by Line:® %%k sk sk &akdok k& xokdok & & xok ok k%

Userdatenl := File.ReadLn (1);
Userdaten2 := File.ReadLn (1);
Userdaten3 := File.ReadLn (1);

/] % kK ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok ok K ok Kk ok Kk ok

//******************Close files *khkkkhkkhkhkkhkkhkkhkhkhkkhkhkrx

File.Close (1);

[% kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok ok K ok Kk ok Kk ok

//******************Output data:***xhkkkkkhkkhkkhkkhkkhkkhkhkkhkhkkkkx

Screen.Label.Show (5, 100, 180, 'previous user:');
Screen.Label.Show (6, 100, 210, Userdatal);
Screen.Label.Show (7, 100, 240, Userdata2);
Screen.Label.Show (8, 100, 270, Userdata3);

[% kK ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ko ok K ok ok K ok ok ok ok ok K ok Kk ok Kk ok

SetValue (1);
DateTime.Delay (2000);
repeat

until StepContinue;

Screen.ClrScr;

end.

21. Edit the third interpreter step:
You can rename files with the procedure ® File.Move (). Use the procedure
and change the name of the document of the current user to that of the previ
ous user. Through this, the current user becomes the previous user at the end
of the sequence. When re-running the sequence, the file of the
current user is deleted and recreated. That way, the current user and the previous
user is stored.

Syntax:

File.Move ('C:\...\TypeData\TYPE 12PRACTICE10\User current.
txt', 'C:\...\User before.txt', True);

The procedure requires the specification of paths to rename the files.

22. Enter the measuring value and a delay time of about one second.

58

Source code for the third interpreter step:

var

step

6. Files

IP_FILE2.IPS

//******************Rename File s * %k %k kkkokkokkokkokkokkokkkkkkkkkx

File.Move ('C:\TestCollection\Testing\TestManager CE\TypeD-
ata\TYPE_12PRACTICE10\User current.txt',
Testing\TestManager CE\TypeData\TYPE 12PRACTICE10\User before.

txt', True);

'C:\TestCollection\

[/ kK ok kK ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok ok ok ok

SetValue (1)
DateTime.Delay (1000) ;

repeat
until StepContinue;

end.

23. Save your interpreter steps and start the sequence.

© TestManager CE V15,146 - Typ: 12UEBUNG10 - txt Datei - 01File EC: 0.999

[o]

Prifschiitausgaben | Ausgefibite Prfschite | Debugaing

Benutzernane eingeben: [Administrator| oK

St | gt |

Step N
Step Indeic
Ps:

06w
[

Zsit
Priidauer.

Durchiaut

1
1

IP_FILEY

18

1

1
2518
1815

a

Piifinge
i

Aktueler Pifschitt

B = A1 =

Messwet:

)
PEdt

Fehler[behandein +

Einheit

=

EdiPara

Debugger

&
Tools

Figure 6-7
Starting a Sequence- Step 1

59

6. Files

0 TestManager CE V15.146 - Typ: 12UEBUNG10 - txt Datei - 01File EC: 0,999 [o]
Piifschittausgaben | Ausefiire Prifschitte | Debugging Stepinto | Debugrio |
Step e 2
St Index 2
aktueller Anuender: IPs: | IPGETUSER
User: Administrator OGW. 1
usw [
Date: 2010-3-25 . .
Time: 14:28:17 Priifdaver: 27s
Duschl wa
vorheriger Anwender:
User: Max Wusternann
Date: 2010-3-25
Time: 14:27:55
Piinge
53
Biduele Pichit Wessnert Einet
L Figure 6-8
A ot & | Eetie[oehendsn =] g
Step+ Al IPEdt .
= Starting a Sequence -
o
[§
Step Wiedetholen Edit Para Debugger| Tools
Step 2

INI-File

The TestManager also supports access and the editing of INT files. These files are initi-
alization files that are, for example, used for storing program settings. INI files can be
interpreted, interpreted section by section, described, deleted, and deleted by sections
by the TestManager. Functions and procedures are available for this purpose.

An INI file consists of the components section, the elements and the values. These so-
called sections represent an umbrella term under which items can be stored with their
values.

Example INI file structure:
[Sectionl]

Item1 = Valuel

Item2 = Value2

[Sektion2]
Item1 = Valuel

Item2 = Value2

Item1 in Sectionl and Item 2 in Section 2, and their values can coincidentally be iden-
tical but are to be treated fundamentally different.

60

O

6. Files

Exercise 6-3
Create read and write INI files

This exercise deals with INT files and should give you a better understanding of how to
deal with them. The task at hand is to edit a sequence, which consists of two steps. In
the first step, an INI file will be opened or created. In this file, three randomly generated
numbers (length, width and height) should be written in the ‘dimensions’ section. From
these generated numbers, the volume should be calculated and stored in the ‘calculated
values’ section. The reading and the output data from the INI file should be realized in
the second step.

Step
1.

by step:

Log on as administrator

Navigate from the toolbar> Password. Press the F4 function key or select
Administrator and type in >admin

Create a new family type with a variant, set it to active, and save the edited data.

Example: Family Type: 13PRACTICE11
Code Type: INTFile
Information Type: Writing and Reading

Choose the variant of the new family type in step 2 via Typeselect.

Add a new step to both the sequence list and the test step parameters and
include two new step types. Defined the limits, activate these steps and save the

edited data.

=T

o b
s 8 YXY SR B

ot TUEBINGET]]

] sy | 1= e

A

=3 Hos o) B Ext NS | Obmgces | Uniergones

wie » o 1 ! Figure 6-9

= i o 1

xxxxx Test Sequence Editing

INIFle - Sotvben und Lose = | | Al
a1 /5 0k 2) | i

Select the variable created via Typeselect and start the sequence.
Edit the first interpreter step:

Create two variables of type String to store the section name and four type real
variables in order to save the values.

61

6. Files

Open or create an INI file using the procedure s INIFile.SetFileName
(Path + Name.INI). It is available to choose a path that leads to the desktop of
the computer you are using or in the TestManager installation directory.

Syntax:

INIFile.SetFileName ('C:\...\TypeData\TYPE 13PRACTICE11\PRAC-
TICE11.INI'");

Tip

Please note that the path you use can differ from the one above.

62

10.

11.

12.

Generate three random numbers with # Math.Random () function and assign
it to the intended variables.

Write section in the INT file:

Assign the variables for the section to the name ® Dimensions. With help of the
procedure m INTFile.WriteReal (section, item, value), you can write a real value
for an item in the section.

Syntax:

Sectionl := 'Dimensions';
INIFile.WriteReal (Sectionl, 'l: length', valuel);

Calculate the volume and pass the value to the variable provided here by you.

Assign the name of the second section of the proposed variables and write the
volume of this section in the INI file.

Set the measurement value within the limits defined by you.

Source code: IP_INIFILE.IPS
var
Sectionl : String;
Section?2 : String;
Valuel : Real;
Value?2 : Real;
Value3 : Real;
Volume : Real;
step

= continue to the next page

13.

14.

15.

16.

6. Files

//******************Open or create IniFile:********************
INIFile.SetFileName ('C:\...\TypeData\TYPE_l3PRACTICE11\
Practicell.INI");

[/ kK ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok kK ok K ok ok K ok ok ok ok ok K ok Kk ok Kk ok

[/ KFxK KKk KKk kKkkkkkkkxGenerate random Values sk xkkkkkkok kokkokok ok kok ok ok k

Valuel := Math.Random (100);
Value2 := Math.Random (100);
Value3 := Math.Random (100) ;

[/ kK ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok Kk ok Kk ok

[/ *¥*kKkkxkkxkk*xkSactionl in INIFile Schreiben: * %k k& ks k ko k &k k*kx

Sectionl := 'Dimensions';

INIFile.WriteReal (Sectionl, 'l: length', wvaluel);
INIFile.WriteReal (Sectionl, '2: width', wvalue2);
INIFile.WriteReal (Sectionl, '3: Height', wvalue3);

[/ kK ok kK ok ok ok ok K ok ok ok ok ok K ok ko ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok Kk ok Kk ok

[/ kxR Kk xRk xkKkkkkkkCalcoulated VOLUME : * % * k% k k% k% k% ok k& K k% Kk %ok k % K k %k %

Volume := valuel * value2 * value3;
//***

[/ EFr Rk x KKk Kk kkWrite volume in SeCtion2 s * % %%k %k kkkxkk k% kkk

Section2 := '"‘calculated values';
INIFile.WriteReal (Section2, 'l: volume', volume);

[/ kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok Kk ok Kk ok

repeat
until StepContinue;

SetValue (1);
end.

Edit the second interpreter step:
Define six variables of type String; two for the allocation of sections and four for
the item names.

Initialize the screen for the output of screen objects.
Open the INI file with the proceduresp INIFile.SetFileName.

Read sections:

Read the sections about the procedure ® INIFile.Load () and set the internal
pointer with the order ® INIFile.First on the first read-in section.

Now, the section name can be passed directly to the intended variable with the

function w INIFile.Name.

63

6. Files

17.

18.

19.

64

Syntax:
INIFile.Load (''):;
INIFile.First; //set pointer to the first section
Sectionl := INIFile.Name;

To read the second section, you must have the internal pointer set on the next
element. This is done by ® INIFile.Next. With the s INIFile.Name command,

the section name can be passed to the variable.

Syntax:
INIFile.Next; //set pointer to the next section
Section2 := INIFile.Name;

Items to read from the INI file:

Using the just-mentioned command s INIFile.Load (Section) the contents of
a section can be read. Should items now be interpreted from this section, then
the process will be similar to the interpretation of the other sections.

The internal pointer must be set on the first element of the Section. For this
purpose the procedure s INTIFile.First is used again. You can now use the
function ® INIFile.Name to pass the item name to a variable. The value of the
item can be read with s INIFile.Value. Should this be passed directly

to a real variable, then you must convert from string to a real using # Val (). You
can then move the internal pointer to the next element with s INIFile.Next.

Syntax:

INIFile.Load (Sectionl);
INIFile.First;

Variablel := INIFile.Name;

Valuel := Val (INIFile.Value, 0);
INIFile.Next;

Proceed as done in thel6th step to interpret the item from the second section.

Syntax:

INIFile.Load (Section2);

INIFile.First;

Compute-name := INIFile.Name;

Calculated value := Val (INIFile.Value, O0);

Enter the variables using the screen functions in the test step display window and
insert the measured value within your defined boundaries.

6. Files

Quellcode: [P_INIFILE2.IPS
var
Sectionl : String;
Section2 : String;
Variablel : String;
Variable2 : String;
Variable3 : String;
Valuel : Real;
Value?2 : Real;
Value3 : Real;
Calculated value : Real;
Compute-name : String;
step
//*****************Initialize Screen:***********************
Screen.SetTab (1); //focus on Test step results

Screen.ClrScr;

Screen.Show;
//***

//***************Open or Create the IniFileS:************
INIFile.SetFileName ('C:\TestCollection\Testing\TestManager

CE\TypeData\TYPE 13PRACTICE11\PRACTICE11l.INI");
] KRR K KK KK KK KK KK KK KK KK K K KK K K K o K o K o K oK K o K o K o K ok K ok K ok K ok K ok K ok K ok

//****************Section names are read Out:*************
INIFile.Load (''):;
INIFile.First; //set pointer on the first section
Sectionl := INIFile.Name; //read name of the entry,
hat the pointer points to
INIFile.Next; //set pointer on the next section
Section2 := INIFile.Name;

[K KKK KK kK ok ok ok ok ok ok K ok K ok K ok kK ok K ok K ok ok ok ok K ok K ok ok kK ok K ok ok ok ok ok ok K ok K ok ok kK ok ok kK kK

//***x*xxxxxx*Retrieve items and values from Sectionl :******kk%x
INIFile.Load (Sectionl);
INIFile.First;

Variablel := INIFile.Name;

Valuel := Val (INIFile.Value, 0);
INIFile.Next;

Variable2 := INIFile.Name;

Value?2 := Val (INIFile.Value, 0);
INIFile.Next;

Variable3 := INIFile.Name;

Value3 := Val (INIFile.Value, 0);

[] KKK K Kk kK ok ok ok ok ok ok K ok K ok K ok kK ok K ok K ok ok ok ok K ok K ok K ok ok ok K ok ok ok ok ok ok K ok K ok Kk kR ok ok ko kK

[/***x*x*x**xx*x*Retrieve items and values from Section2 :*x**kkxxxx
INIFile.Load (Section2);

w continue to the next page

65

6. Files

INIFile.First;
Compute-name := INIFile.Name;
Calculated value := Val (INIFile.Value, 0);

/] % kK ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok Kk ok Kk ok

//*****************Ausgabe:************************************
Screen.Label.Show (1, 100, 30, Sectionl);
Screen.Label.Show (250, 30, 'value');
Screen.Label.Show (100, 80, Variablel);
Screen.Label.Show (250, 80, Str (valuel));
Screen.Label.Show (100, 110, Variable2);

Screen.Label.Show (250, 110, Str (value2));

(
(
(
(1
(1

Screen.Label.Show 100, 140, Variable3);
Screen.Label.Show 250, 140, Str (valuel));
Screen.Label.Show 100, 200, Section2);
Screen.Label.Show 100, 230, Rcomputer name) ;
Screen.Label.Show 250, 230, Str (calculated value));

//***

O\ooo\lo\u'\»wl\)

repeat
until StepContinue;

SetValue (1);
end.

20. Save your interpreter steps and restart the process.

0 TestManager CE V15.146 - Typ: 13UEBUNGELL - Schreiben und Lesen - INIFile £C: 0,999 Ci x|
Priifschiittausgaben | Ausgefiltte Prifschrits | Debuaging Stepirfo | Debugirfa |
Step Nt 2
DIMENSTONEN vert Srplits 2
IPS; IPINIFILEZ
. 05w 1
1: LENGE 23 =2 |
2: BREITE 21 Zeit 151306
08 (AR o Piifdatier 196
: He
Durchiau na
RECHENUERTE
1: VOLUMEN 2009
Piifinge
a1
Akele Pifschit Messmert Einheit
- @s8s F =i Fehier:behandeh v
Mode Slew Arwshl Figure 6-10
< [X] N 2]
‘ml!m,g Abbrechen Step- Wiedeholen Sequence start
Contents of INI files:

[DIMENSIONEN]

1: LENGTH=33

2: WIDTH=21

3: HEIGHT=13
[Calculated wvalue]
1: VOLUME=9009

66

7. Hardware Access

7. Hardware Access

A license is required to operate the program with access to all interfaces. To gain access
to hardware with the demo version, a short-term license can be requested.

A full version of TestManager can be obtained by requesting a license and the

receipt of a key.

License Request

Navigate via the ® menu bar ® Intern ® License and s License Request to reach
the window where the licenses can be requested.

Serial interface

‘The module for the serial port is used to access all types of RS232 ports regardless of
what cards or hardware are realized in the PC. If the COM Port in the system admi-
nistration of Windows appears, it can be used by the program. The module provides
additional ports for additional modules (eg LIN) and adopts the administration of the
port parameters.

Through the Basic settings (# Toolbar ® Setup w Serial Ports), a serial port can be
created and configured.

[l Exercise 7-1
Using Serial Interfaces

Please note that you can only perform this exercise if your computer has the required
COM port. For the implementation of the exercise, a plug, that you should be able
to make yourself, is necessary. This plug is a 9-pin Sub-D connector and needs to be
bridged according to the following circuit diagram:

DB2 Female

1| O o

21 G—

s e_g:I

o R O Figure 7-1
O

Schematic 9-pin Sub-D socket

67

7. Hardware Access

Using Serial Port

This exercise aims at the usage of the serial interface. The task at hand is to request a
short-term license, create a new serial port in the basic settings and configure it. During
the sequence, a string should be sent and received via the serial interface. The inspec-
tion of the received strings should yield that the sent string corresponds to the received
string. If this is not the case, then the result of the process should be adjusted
accordingly.

Step by step:

1. Log on as administrator
Navigate from the stoolbar s Password. Press the F4 function key or select
Administrator and type in >admin

2. Create a serial port:
Navigate via the sptoolbar ® Setup in the basic settings. Select # Serial Ports
from the panel on the left side of the window. Create a new port
with the help of the button

&0 Kanfigurator - System 5 |
Kategorien Kerfigualiorswerts fi Kategorie Konfiguration / Serielle Ports
CAN Patts a i
- DAS4020 Allgemein
Daverlauf ¥ Serelle Parts - Freigegaben
- Deskiap Obersicht
DUT -Log {aktuel konfigurierter Zustand]

- EEPROM - Maritor
FC Busse

- [EC-Bus [IEE-488)
Interpreter

com1

Kaibrationsdaten
Kurven Moritor coms
Kurzschlubtest boritor L
LN
- Lokale Stalistic
£ MCD PC24I0Kate neuen Part erzeugen
= ME3000 g
- ME4000 Eintrag im Tools-Menii
MEphisto Scope 1 - Monitor arzsigenim & Grundmeni
- ME-RedLab £ Unlemenii
B Messdaten £ nirgends
Modabschaling .
- Passuitter
Brinter Dateimasken [l il
- Prafiles Format fiir Masken: s
Puctosht Farametes v e (5]
¥ nicht fieigegebene Farts verbeigen .
LN bbbt T Figure 7-2
Ok E3 Abbrechen | Create Serial Port 1

3. Enter a #Name (example: SERTAL1) for the COM port and optionally add a
comment. Set the port to # Active and set the ® Baudrate to # 9600.
Confirm your changes with the> OK button.

68

7. Hardware Access

. Konfigurator - System |)|
Kategorien Kerligursticriswer fii K ategorie: Konfiguration 7 Serielle Ports / SERIELLT
- DUT-Leg P B
EEFROM - Monitor EIHAD
- P Busse Name SERIELLT Kennung imInterpreter
IECBus (IEE-488)
Kormmentar [Test
B Interpreter
- Kallbrationsdaten [V Akliv
Kurven Monitor I
- Kurzschhibtest Mornitor PartHummet !
LI I~ automatisch élfnen
) Lokale Statistkc Datenformat
MED PL-2410-Karte
o M Baudiate %0~
B ME4O00 Datenbits e
MEphisto Seope 1-Monitor |- =
- ME-RedLab Paritat even -
Bl Messdaten Stopis [e
Modulabschaltung - .
1 Passniiter R e Ly
Printer Tirneout 200[=*] el
- Profiles
Prusfschrit-Parameter EStIe ‘ i
= Serielle Ports [V End-Of-Stiing entfeinen
#-LN Sendepatameter
erielle 10 Busse: Start-0F-Sting [
End-0F-String [
] Hardware-Handshake
1 Serler 10 Bus n
SMZ044 = Figure 7-3
B sbbrechen | Create Serial Port 2

Insert a new family type with a variant, set this to ‘active’ and save the data.
Example: Family Type: 14SERIAL

Code Type: Serial

Information Type: Test

Select the variable created via Typeselect and start the sequence

In the test step parameters, add a new name for the step type and define the
limits. Set the step to ‘active’ and save.

| &blaufliste Id=: 1 4 4 [ake 1)

*TypCodefilter
Sys. |Abl | StepMr. Gota | Infa
: auto created sequence, please edit

- 7 Figure 7-4
L 1 1 1 H Serielle Schnittstelle testen Sequence List
:end
lde 173 Figure 7-5
StepNr | StepAr Name Name (englisch] Akt | Einheit| NKS| Obeigrenze | Untergienze Test Step
 auto created parameter it please edt
1 11P_SERIELL Serille Schnitstlle tesien 12 o 1 1 Parameters

end

Request a short-term license on the ®» menu bar ® Intern ® License.

Start the sequence in SBS mode and edit the interpreter step.

69

7. Hardware Access

10.

11.

12.

13.

14.

15.

16.

70

Edit interpreter step:
Add two variables of type string, in order to store the sent and received data.

Using the help of the screen commands, initialize the monitor to display data in
the test step display window.

Assign the variable to send a string of your choice.

With the help of the function ® RS232.Exists (,Name of the interface’) ask
whether the applied interface exists and enter the result on the test step display

window.
Syntax:
If RS232.Exists ('SERIAL1') = 1 Then
begin
Screen.Label.Show (3, 100, 30, '’‘interface exists!');
end;

Open the applied interface with the command ®RS232.0pen ().
Using ® RS232.IsOpen () ask whether the port has been opened and state the

result as well.

Syntax:

RS232.0pen ('SERIALLl');

If RS232.IsOpen ('SERIAL1') = 1 Then
begin

Screen.Label.Show (4, 100, 60, 'Port is open!');
end;

Send the string stored in the variable using the command s RS232.Send () via
the applied serial interface.

Syntax:

RS232.Send ('SERIALL', send);

With the help of function ® RS232.Read (), send the data received via the inter
face to the second variable.

Syntax:

Reception := RS232.Read ('SERIALL');

State the sent and the received string and insert a lag time of about one second.

17.

7. Hardware Access

Compare if the received string corresponds to the transmitted string and adjust
the measurement value accordingly. The sent string must correspond to the
received string due to the wiring of the socket.

Source code: [P_SERIELL.IPS
var
Reception : String;
Send : String;
Step
Screen.SetTab (1); //focus on test step display

Screen.ClrScr;
Screen. Show;

//*****************Assign String-******************************

Send := 'Hello';

[kK ok kK ok ok ok ok ok ok ok ok ok ok Kk ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok Kk ok Kk ok

[/ **x*x**xxxQueries whether interface is configured: ****xxkkkkxxx*
If RS232.Exists ('SERIALLl') = 1 Then

begin
Screen.Label.Show (3, 100, 30, '’‘interface is
end; configured!’) ;

[kK ok kK ok ok ok ok ok ok ok ok ok ok Kk ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok Kk ok Kk ok

[*FHRKK KK IR AKX FKKXOpEn Interface KX X x KKk K Ak ok kK Ak Kok kK KKKk

RS232.0pen ('SERIELL1');

If RS232.IsOpen ('SERIAL1') = 1 Then
begin
Screen.Label.Show (4, 100, 60, 'Port is open’!"');

end;
//***

//*****************Send.*************************************

RS232.Send ('SERIALLl', send);

[kK ok kK ok ok ok ok ok ok ok ok ok ok Kk ok Kk ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok Kk ok K ok ok K ok ok K ok ok ok ok Kk ok Kk ok

//*****************Receive:***********************************
Reception := RS232.Read ('SERIALL');

//***

//*****************Ausgabe:*************************************
Screen.Label.Show (1, 100, 90, 'Sent: ' + send);
Screen.Label.Show (2, 100, 120, 'Received: ' + reception);
DateTime.Delay (1000);

/] % kK ok kK ok ok ok ok ok ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok Kk ok Kk ok

repeat
until StepContinue;

= continue to the next page

71

7. Hardware Access

//*****************Messwert Setzem:*****************************
If received = Send Then
begin
SetValue (1);
end
Else begin
SetvValue (0);
end;
//***

end.

18. Save your interpreter step and start the sequence.

%0 TestManager CE V15,146 - Typ: 14SERIELL - Test - SerellEC: 0.999 [©)
Pifschitausgaben | Ausgefiie Prifschite | Debugging St | Debugio |
Step i 1
Schnittstelle existiert? Step Inde: 1
IPs: 1P_SERIELL
06w 1
Gesendet: Hallo UGw: 1
et 165316
Empfangen: Hallo
Prdater. 235
Durchia na
Piinge
rui

Aktuele Prfschitt Messwet: Einheit

I | Fehier Frehandebi ~ .
[I A o e Bild 7-6

Serial Interface Test

k)
Tools

D .B g i
et Abbrechen Step Wiedetholen EdiPara Debugger|

Tip:

Should the result of the step fail repeatedly, then it could be that you are operating a
non-licensed system. Check if you have access to a license and if necessary request a
short-term license.

72

8. Measured data

8. Measured data

Each test step generates a set of data after execution. Generated are the real measured
value, the result of the step, and also a set of metadata. This, for example, refers to the
time of testing, the duration of the step, and the obtained data that is available in that
type of test step, e.g. the number of the test step, the unit, etc.

The standard way to store this data is in DBF format (dBase). This requires an installed
BDE (Borland Database Engine). The measurement data can be stored in standard
format or in a freely definable spreadsheet. To avoid large amounts of data a built-in
data maintenance is available.

The path, in which the data are stored in, is configurable. In type-related storage, a sub-
directory is created for each family type. All types of data are stored together by default.
There is also the possibility to transfer the measurement data to a DLL.

[l Exercise 8-1
Dealing with measurement data

This exercise will demonstrate the use of measurement data. It is intended to summarize
the measurement data in DBF format and realize the local storage.

Step by step:

1. Log on as administrator
Navigate from the toolbar Password. Press the F4 function key or select
Administrator and type in admin.

2. Activate the data logging in DBF format by navigating to the basic settings
®» toolbar ® Setup. In the left panel of the basic settings, select # Measured
Data and open the content by selecting the ® + box.

0 Konfigurator - System []

Kalegorien Konfiguationswiets fi Kategorie Konfiguration / Messdaten

Andenungsverzeichris -
ArmeldeFarrnar
CAN Patts
DAS4020
Daverlauf
Desktop

~DUT -Log
EEPROM -Maritor
FC Busse
IECBus (IEE-498)
Interpreter
Kalbratiorsdaten

Kurven Moritor

-~ Kurzschiuftest Moritor
LN keine Werte:
Lokale Statist
MED PL24I0Karte

ME4000
MEphisto Scops 1 - Monior
ME RedLab

Semcacirions Daen
Messcaten DEF Figure 8-1
Modulabschaltung
i Data configuration

Profies

73

8. Measured data

74

3.

Select ® Measure Data DBF and in the right field under General ® checkmark
the box titled ‘Measure data DBF-Enable’.

Kaibrationsdaten

Kurven Moritor

Kurzschlubtest Moriter

iy

Lokale Stalistk.

MED PC-2410 Karle

ME00D

ME400D

MEphisto Seope 1 - Menior

ME RedLab

Messdaten
Benutzerdziinients Daten

Messdaten DBF

Modulabschalung

Passwiiter

Piinter

Fofilss

Pruefschiit-Parameter

|: &

Methade
At dex Speicherung | Standard - alle Typen gemeinsam

+ Typbezagen - nach Typen getiennt
& erst nach dem kompletten Nutzentest
€ sofert nach jedem einzelnen Piiiing

Zeitpunkt der Speicherung

[&bbrechen

D Konfigurator - System |-
Kategorien K i fii Kategorie:Kenfiguration / ’ DEF
Enderungsverzeichnis
Anmelde-Formuler Allgemein
C4N Ports ¥ {Messdaien DBF - Freigegebent
D&54020 Ziel
g:::"‘n";’ Iokaler Piad [zPREZ\MERSDATA =]
DUT -Log Netzwerk Plad | =
EEPAOM - Monitor
P Busse Speicherung auf | lokaler Plad
© Netawerk Plad
IEC-Bus (IEE-488)
Interpreter [auf anderen Plad speichem,. wenn gemshker Plad nicht verfighar ist

Figure 8-2
DFB data release

The measured values are thus stored in a DBF file under the installation directory
folder MEASDATA. Alternatively, a network path can be specified. The data is
separated by type and stored locally only after the complete functionality test has

taken place.

Open the menu to the setting ‘Data maintenance’ (subpart of measured data
DBF in the left panel of the window). Set it to ‘Start when program starts’ under

data maintenance.

8. Measured data

WP Konfigurater - System =

Kategorien Korfigurstionswets fi Kategorie Konfiguration / Messdaten / Messdaten DBF /L
Konfiguration a
Enderungsverzsichis wann starten el Frogiammsta
- Anmelde-Formular " beiFleset / Typwechsel
CAN Pots b edem Spekham
554020 einmal tgich
 ginmal stindich
Daverlauf nicht automatieeh
Desklop
DUT -Log Die Daterplege kann auch ber Merii oder Systeméklon 20 aufgerulen werden
EEPROM - Moritor ™ Datenimlokalen Pfad pllegen
- Busse ™ Daten im NetawerkFfad pllegen
ECBus (EE-468)
prer ™ walvend det Datenplege Irformaliorsfensler zeigen
Kalbratansdatzn Datsien & run de Standardnamen beachien
Kurven Moritor alle DBF Dalsien beashien
Kurzechiubtest Monitor Datenpflege - Backup
LIN - Backup der DEF Dateien zeitgestevet durchfihren
Lokale Staisic

MCD PL28i0-Kate £ | |0 jewsils nach 8[%] Stunden

ME3000 " jeweils nach 1[=#] Tagen
ME4000

MEphisto Scope 1 - Mortor % chne zeilichen fusisser

ME-RedLab ™ Baskup der DEF Dotsien durchfihven, wenn diese
Messdalen

Benutzerdenitte Daten EEEED 1400 KB sind

=1 Messdalen DBF
- Datenpliege
Tabellnsinukiur
- Modulsbschaltung

Bei Aufruf aus Menii oder iiber Systernéklion 20 wird immer ein Backup durchgefiihrt.
unabhangig von Aler und GroBe der Dateier!

Plad fii Backup: | \BACKUP

Passwitter Des Plad kann Laufwerks und Pladangaben erthalten Das akluelle
Printer Messdaterverzsichris karn mit ".\" angeben werden. Bsp.: "BACKUPS"
Frofiles Dateiname: [=_zovMzD_sHz

Pruetschilt Parameter Der D ateiname kann foigende Platzhater erthaer

Setielle Forts 7 - dahr, %M - Monal, %D - Tag. %H - Sunde, %N - Minute (alle 2weistelig)
Seisler 10 Bus *wird ersetat durch den Namen der Ursprungsdatei
- 5M2044 Mulimeterk ate Solle ein Hame bereis benutzt sein, so wird ein Index angehangt
Sockets (TCPAP) Backup-Sitze lbschen
- Sprache [~ wern mehr als B000[=~#] KB BackupDaten vorhanden sind
SOL Database
Spstem [diemehr als 28[=#] Tage aksind .
Toabint i Figure 8-3

| B | Setting Data Maintenance

Save the settings by clicking on the ® OK button.

Choose the sequence of family type # 2MEASUREDATA through

® Typeselect and start the sequence in Automatic mode.
Via Windows Explorer, navigate through the #Installation Directory
of the TestManager to the folder % MEASDATA. There you will find a folder
» TYPE_2MEASUREDATA that includes the DBF Files ®» FAILDATA
» MEASDATA » ands PASSFAIL.

You can view the contents of DBF files using Microsoft Excel.

75

9. Reports

9. Reports

Measurements and results can be viewed, saved, and printed. To customize the printouts
according to the wanted user preference, the TestManager is equipped with a powerful
report generator. With its help, the printouts can be designed freely. It can refer back

to draft and edit them as well. Measurement values can be retrieved, managed, and
printed via the ® menu bar ® Values ® Measured Values. Through the use of reports,
common ,templates’ can be created so that you do not have to write a new report for
every sequence.

[l Exercise 9-1
Creating Your Own Reports

The objective of this exercise is to create your own report, in which the measured values
for the already-existing 2MEASUREDATA sequence can be printed and stored. This

way, the design will be customized individually.

Step by step:

1. Uberprﬁfen Sie Thren Passwortlevel, sollten Sie nicht als Administrator beim
System angemeldet sein, dndern Sie dies.

2. Request a short-term license, in case your software is not licensed.

3. Choose via ® Typeselect the sequence of family type % 2MEASUREDATA and

start the sequence in automatic mode.

4. After completion of the sequence, navigate to the ® menu bar ® Values
® Measured Values to indicate the current measured values of the last test
process..
P Aktuelle Messdaten des letzten Praflaufes [=][@ s
Prifinge mit Messwerien R Roport
ModNr. | Barcode Ergebnis Werte
@ 2 01 Variantt easw002 Fall 3
@ 3 01 Varantteasu003 P&SS 3
& 4 01 Vaniantt easur04 Fall 3
@ 5 01 Variantt easurd05 P&SS 3 .
@ 6 071 Vaniantt easul06 PASS 3 Flgure 9-1
Messwette des hlten Prifings Measu-
Nri. Mame At ‘wiert | Einhieit Unterarenze Obergrenze Ergsbnis Daver Zeit
@/ T Set measurement data for the DU IP_Meas? 10k 1 1 PASS B4l ms 17.08.38 rement
@ 2 Set measurement data for the DU IP_Meas2 1 Ok 1 1 PASS 16ms 17:0%39
@ 3 Shows the messuemert data fior IP_Showhd 106 1 1 Pass 3Tms 170333 Values
5. Activate the button ® Report to open the administration window.

77

9. Reports

6.

78

7.

8.

D Report Verwaltung |) e
Kategare: MeacData | FeparDaten
Name:
SingleDUT.fi I
Beschreibung,
Figure 9-2
Verschau | Drucken | Beatbeiten 3 Abbruch | Report Management

Select the existing report AIIDUTs.frf and confirm your choice with the button

» Edit to customize the report to your own preferences.

Usselams |

Dauer|

I Ergebnis | lodus__|_Messwerte
‘mber’]|[vdsDutList." Seri gl TestResult_T']jt."SBSFlag_T] MeasValCount] TestDuration”] s |

Detai feader .
[IP-Schritt

Detaildata

[vdsMWList "Stepinfo” [SMWList “Upperlimit T

P o

= Designer - AIDUT: it o
Fie Edt Toos 7
|DSRR| L w@ v~ 0 nE Yy 8 (K] oo I3
I - -BIU|As|EE=ZE |=||=1 — 1|lO o M

Paget | —|

cPCI Testsystem Victor 2

= i
& | Messergebnisse =
3 TypCode J{TypeCode] 4 Typ-Familie}[TypeFamily] i
L i
o 4 ¢ - B : 1
= System-Nummer..|Systemhir] Seite]SALPAGES], =
L Page feader 4
@ Datum [DATE]
o Zet re]
= [Typ-Code[TypeCode] i Seite]‘ALPAGES],

N

Figure 9-3
Designer Example

To edit an empty report, please navigate to # toolbar ® New report

Now create your own title report, by going to # toolbar ® Insert band

’
Insert new band

A=)

Band type

%

Report title
Report summary
Page header
Page footer

Master header

~
-~

~

-

" Master data
" Master footer
" Detail header
" Detail data
" Detail footer
-

Subdetail headsr

Subdetail data
Subdetail footer
Owerlay
Colurnn header
Column foater
Group header
Group footer
Cross header
Cross data
Cioss footer
Child

SIS Te e Tha TS T TS TS Tie IS

Cancel

9. Reports

Figure 9-4
Creating a Report Title

Figure 9-5
Select Report Title

9. Select » Report title from the window and confirm with the button ® OK.

= Dusgrr- United (=)

it T 1

DEER ¥2@ - W SEX y [#E 5[N] ox El

i IFAILY “i o
Pagel ‘

L}

& 3

& (i

e i

] s

] EL

L 4

@

®

]
10. Select a place in the report, where you want to insert your title report.
11.

Via the ® toolbar ® Insert rectangle objects, rectangular fields can be inserting
in the report. Place one of these fields in your report title.

79

9. Reports

80

12.

13.

14.

15.

A text editor window can be opened to allow you to enter a text in the box or
have the system transfer variables over.

2 Text editor e
FL o ye@ = @ X v
|
begin
end
Figure 9-6
1:1 TextEditor

In the upper box, type a suitable name for your report, and confirm your entry.
Drag it to the desired location and edit the desired font size.

Depending on your preference, you can set up a color, frame, or something
similar to your field via the # toolbar.

TR Y09 YRS K e %=
-wnrulas sl=== FHE=n/coza oo ads -

=]

Mein Prufling

LePdmEHREE |

Figure 9-7

i —— = Designer Example

To display variables like the current date on the report, place another text box.
Navigate via # toolbar of the text editor window ® to the insert data
field in left field

16.

17.

9. Reports

® vdsDutList and ® TestTime_T in the right.

Insert data field @

B vdsDutList
wshWWList
=Z] vdsPS5ysParams
=2 wdsPSUserParams

Eh TestPos -
Eh MeasValCount

EL StartMumber
55 SBSFlag T
EL TestResul_T

Figure 9-8
EL TestData T

Designer Example

This approach can retrieve any of the variables of the system and must not edit
each sequence by hand.

This way, you can add more variables such as Family Type, Code Type, test time,
etc. to your report title.

Several variables can be used in one field; this can serve as an advantage for page
numbers:

[PAGE#] of [TOTAL PAGES]

This way, the current page number of the total number of pages can be displayed.
Insert a new band and for the type select ® Page header. Use this command

to add a header to your report. Right-clicking on the header can set if

this is to be used on the first page. In this case it is not necessary.
Create a header according to your preferences.

81

9. Reports

Uaseions |

= Designer - AIDUTs (= [© il
Fie Edt Tooks ?

DEEDR $BE © - ([WWE Y0X ul# 8T K] e %

el -l - Bsru AZ m|EECcoos| L5 1 -
e —|
5 S
=] B P

Mein Priifling

- | -

=8 Zett [uE] e
I3 Typ-Cade][TypeCode] Typ-FamilieTypeFamily] il
2 Typ-Beschrsibung:,[Typsinfo]]
8 Aot resti] i
Systom-Nummer. [Systomil] I semslfApaces] =
@ s 2]
% s Messergebnisse

s [TypCode [TypeCode] | T setelALPAGES]

i oo [Easone | iiodus | Wesswere |

Daver|

moer][vdsDutList"Serialumber] [fTestRosutT1}"S85Fiag T

lestDurston 5|

Detat esder
§_SchvNifschritome ___ [P-Schin [Wesswen| _______Grenzen|Ergebnis]

Detai data

[esMWList "Stspino] " SteplPType |t MeasValue T[sMVIList “Uppertimi T

s s e Memos: SchrttNr

18.
the data. To do this, double-click on the band:

=)

-
Band data source

[Mone]
Wirtual D atazet

st

fiDS MwdLis
3 fiDSPSSysParams
3 (DSPSUserParams

L e e

Fecord count

Figure 9-10

New Band

19.

20.

Choose ® frDSDutList and confirm with s OK.

Figure 9-9
Example

Create another band from type s Master data. Set a source code correlating to

Realize the displayed module number, serial number, result, mode, duration and

measurement values from the table of information. The used data can be found in

the division ® vdsDutList.

82

21.

22.

9. Reports

Module number ®» [vdsDutList.“Module number*]

Serial number ® [vdsDutList.“SerialNumber]
Result ® [vdsDutList.“TestResult_T*]
Mode ® [vdsDutList.“SBSFlag T“]
Measurement Values ® [vdsDutList.“MeasValCoun*]
Duration » [vdsDutList.“TestDuration“] s

» Master data example, see Figure 9-9

Create a new band from type ® Detail header and one from type

® Detailed data. These two bands are closely linked and serve the display of the
measured values of the individual interpreter steps. The names are stored in the
detail header while the variables (values) are stored in the detail data.

Detail Header:

» Step No.

» Step Name

» IP Step

®» Measurement Values
®» Limits

» Results

The detailed data section will fall back on m frDSMWList and give out the

variables (values) to the detail header.

® Detail header + data example, see Figure 9-9

You can vary the distances of the bands with the help of the gray areas. To see
your report, go to m toolbar ® Preview report and adjust the layout to your

preferences and check whether the variables are displayed
correctly.

83

9. Reports

| Mein Prifling

Datum: 09.02.2010 .
7ot 12Ea51 || Messergebnisse |
Typ Familie: ZMEASUREDATA
o Typ Code: 01 VariantMeasur
Typ Information:
) s Typ-Beschreibung: Samgple handle measurement data
Systemnummer. ! Seite: 1won 2
(1[0 VeraniMeasumdi FRIT [Ame | T | 1015 5|
[Sen-Nr. [Sohrm-rame TR-SCht ELEEEEEE
1|58t measurement et tor the DUTE I test sen_ | IP_Weas? 1 11| °ASE
2|58l measurement gata for the DUTE I the second e IP_ Nieas2 1 1.1] PASS
3|Shows the measurement data om step 1and 2. [IF_Showhieas 1 1.1] Pass
[Z_ [vananiveasu0iz [FALL [amo 1 | 0s)
[Senti-Nr. [Schmt-hame = [Messuen] Grermen|Emennis |
| 1|52t measurement Gata for the DUTE I teststen. |IP Meas? | of 11 FaL |
[F_ [0 vananiMeasudlz |PAsS | ame | 3 | 1,016 5|
SO [SCh-Hame TR-5Cht S G
T |eT measurement Gata tor he DUTE 1 fest a0, |IP_MWeas! 1 11| °ASS
2[%=t measurement data for the DUTs In the second tedIP_Meas2 1 1..1| PASS
3| SNows e Measunemen Gata Mo sp 1 and 2 . |IF_ohowieas 1 11| PA5S
[Br [S=sfernummer Ergebris | Modis | Messweri= | Diauer]
2 |O1 Varanieasamid |FAL [585 | 2 | 75|
Softti-Nr. [Schmt-Name = Wesswen| Grenzen|Ergeonis
1|t measurement ata for the DUTE I teststen., |IP Mieas! 1 1.1] Pass
2|58t measurement oata Tor the DUT I e s2cond 1] IF_kieasd 1 1] FaL

[t [S=sternummer [Ergetris | Modis]
|5 |01 VananiMeasumas [PASS NG |

[Set measurement data for the DUTE I test step..

=

2|52t measurement Gata for the DUTS In the sacond b IP_Maas?

3| Showe the measurement 43ta fom step 1 and 2

IP_Showhess

Senermummer

Ergeons

|6 [t VananiMeasumae

| Modus WesEaeTe Ciauer |
FASS [Ao | 3 | 10155

[Serit-Hr. [Schii-hame [IF=Sanitt [Messwer] Grereen|Egonis |
Datum: 09.02.2010 - =
g e | Messergebnisse |
Typ Code: 01 VarantMeasur
Seite: 2 von 2
1|32t measurement data for the DUTE In test step.. |IP_M=asi 1 PASS
2|Set measurement data for the DUTS In the sacol IP_Mz3sd 1 PASS
3|hows he measuremen Gaia om step 1 and 2 |IF_Showhas 1 PASS

23.

under a new name.

84

Save your report via the ® menubar ® File # Save as

Figure 9-11
Measurement

Results

10. DLL

10. DLL

The acronym DLL stands for Dynamic Link Library. A DLL can include a program
code, data and resources in any combination. The portable executable file format is
usually used for this purpose. A DLL serves the purpose of reducing the required storage
space on the hard disk or main memory. But other application fields are also possible.
An example of using a DLL:

The program code, which is used by multiple applications, can be summarized in a DLL
and stored on the hard disk. The advantage is that the program code only has to be read
once into memory and not from every single application that wants to access it.

[l Exercise 10-1
Dealing with DLLs

This exercise should shed some light on how to deal with DLLs. The Kernel32.dll,
which is found in ® Windows directory under subdirectory

» System32 should be used. This DLL contains a function to generate a beep via the
speaker inside your computer. The Kernel32.dll needs to be included in your sequence
and the beep function to be introduced to the system. Using this function, implement a
sound pattern.

Step by step:

1. Log on as administrator
Navigate from the toolbar Password. Press the F4 function key or select
Administrator and type in admin.

2. Create a new family type with a variant, set this to ‘active’ and save the data.
Example: Family Type: 15DLL
Code Type: 01DLL

Information Type: Kernel32

3. Edit the sequence list and the test step parameter. All you need is one test step.
Enter a new name for the ‘step type’ in order to generate one new interpreter step.

85

10. DLL

86

| Ablaufliste Idw: 1/ 4 Akt 1)

*TypCodefilter
Spz, |Abl | Stephr. Goto | Info
; auto created sequence, please edit

A Fi 10-1
igure 10-
1 1 1H DLL .
~end Sequence List
Prifschiiparameter Figure 10-2
TR Woms fongisch] W e W Boereas [z | Tt sfap para-
1 1IPDLL2 DLL DLL Ja o o me'ers

Select the variant from step 3 via # Typeselect and start the sequence.

Edit the interpreter step:

The beep function to be used from the Kernel32.dll delivers a real value after
execution. In order to assign this value, you should first create a variable of type
real.

If a DLL is integrated into an interpreter step, the DLL should be made known
to the system and is assigned with a so-called alias. Via this alias, the DLL can be
called upon in the interpreter. With the procedure # DLL.OPEN (alias and path
in which the DLL is stored in) the DLL is opened and managed by the

internal alias.

Syntax:

DLL.Open ('Kernel32', 'C:\Windows\System32\Kernel32.d1ll"');

The DLL can now be addressed by the name Kernel32.

The procedure ® DLL.REGISTER() enables functions and procedures to be

found in a DLL and verifies the sequence step by applying a name using an alias.

Syntax:

DLL.REGISTER ('Kernel32', 'Beep', 'S:I,I:L');

'The beep function contained in the DLL Kernel32 is introduced to the system.
In most cases, when calling upon functions or procedures from a DLL, variables
must be transferred. This must also be specified when registering the beep com
mand since it depends on the types of data to be transferred, in this case by

10. DLL

specifying # 'S:LI:L'. Through this information, the call format of the function /
procedure is defined:

The first letter specifies the call type, here three types are differentiated.
® P for a Pascal call, ® C for a C-Call and # S for a standard call. The call
type must correspond to the routine’s call type in the DLL.

The definition of the call type is followed by a colon (:). The codes for each para
meter are separated by a comma and can be obtained from a list in the interpreter
help. The return value is separated from the parameters by a colon, which also
follows the indication of the type.

Thus, for the syntax:

DLL.REGISTER ('Kernel32', 'Beep', 'S:I,I:L');

following explanation:

The beep function from the DLL Kernel32 is introduced to the system. Calling
upon the function is done via a standard call. Two parameters of type integer are
transferred, and the beep function returns a Boolean type value (this corresponds
to a logic value). The integer frequency (pitch) in Hz and tone duration in mil
liseconds is then sent to the function.

The system is now aware of the DLL of the Kernel32 and beep function in ‘pitch’.
The beep command can now be called and the return value of the variables
assigned. The invocation of a command (function or procedure) is done with the
function s DLL.Call ().

Through this task, the previously registered function can be called upon from

the also previously opened DLL. In this function, the parameters defined in the
registration are transferred.

Syntax:

Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);

The beep function is called upon from the Kernel32 DLL, to run with the
frequency 3500 Hz and duration of 50ms. The return value is transferred to the
variable value.

By repeatedly calling upon the beep command, sound patterns can be created
with altered frequencies and durations.

87

10. DLL

88

Syntax:
Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 4500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 5500, 50);

At the end of your interpreter step, close the DLL using the procedure

®» DLL.CLOSE(). When the command is executed, all registrations are deleted.
‘This means that when a new instruction is to be carried out after the DLL.
CLOSE command, then a new registration is required for the DLL to be opened
and instructed.

Syntax:

DLL.CLOSE ('Kernel32');

The DLL with the internal alias Kernel32 is closed and the registration of the
beep command is deleted.

Source code: IP_DLL.IPS
var
Value Real;

step

[/ xFAREK KKK XX HOpEN The DLz %% %% ok k& %ok dok ok &k ok dook ok & %k Kok K K XK Kk K X

DLL.Open ('Kernel32', 'C:\Windows\System32\Kernel32.d1ll');

/] %k K ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok Kk ok Kk ok

//**************Register the Beep command:*****************
DLL.REGISTER ('Kernel32', 'Beep', 'S:I,I:L');

/] %k Kk kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok Kk ok K ok ok K ok ok K ok Kk ok Kk ok

o

J/*¥*¥*k*kxkxkxkxxxx*x*x* Nccess the Beep command

Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 4500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 5500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 6500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 5500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 4500, 50);
Value := DLL.Call ('Kernel32', 'Beep', 3500, 50);

[] %k Kk kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok K ok ok K ok ok ok ok ok K ok Kk ok K ok

JhEmEmEEtgleose Ehe DLl and Set Ehe valuagswHiiiiiiiy

DLL.CLOSE
SetValue

('Kernel32');
(0);

/] % kK ok kK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok K ok ok K ok ok ok ok ok K ok Kk ok Kk ok

end.

10.

10. DLL

Save your interpreter step and restart the sequence. Now, the sound of the
generated sequence of notes (pitch) should be heard through the internal speaker.
Please note that after a certain frequency level, sounds will no longer be
transmitted from the speakers. The frequency range of human hearing is

about 20 to 20,000 Hz.

89

11. TestManager ME

11. TestManager ME

The TestManager CE provides the perfect integration of the ME-iDS driver concept
made by Measurement Computing Corporation. This software allows the user to the
simple and rapid entry into the Meilhaus ME-iDS system allows drivers.

To use this part of the book eff ective, can you please upload the MCD TestManager
ME www.mcd-elektronik.de/deutsch/meil.html down under. On this side there is the
free trial version available.

Install the TestManager ME on your PC. To do this, follow the description to install the
TestManager CE at the beginning of the book (see Chapter 1 introduction).
Reboot the system, as used by the CE version, with double the shortcut on your desk-

top.

The development environment TestManager ME

Teanager ME V15230 Ty MEDS - NES30 et Sich - 306 0588 Lol
Ao st ki s Tt Lol e i e

i Vwmum o) pn it iy HED Eionk

Figure 11-1
Program

window

The program window of TestManager ME is similar to the structure of the TestManager
CE window. Major differences lie in the structure of the menu and the toolbar this new
menu items or buttons are created. In the menu bar user tools anchored the point again,
while the toolbar with a Meilhaus E. -, ME one monitor and one MCD-button has
been fitted. Operation and menu navigation are identical in both versions, therefore, at
this received will not be elaborated on this (see appendix - Differences in the menu of
TestManager ME).

91

11.

TestManager ME

92

For more information about the company's products please contact Measurement
Computing Corporation over the button ® Meilhaus E., In the case of an existing
internet connection directs to the homepage. Get information about products, drivers
and software, references to books and literature, etc.

The button ® MCD Elektronik guides you to the MCD website, which you

have already downloaded the trial version.

The ME is about the Monitor tool # ME button on the toolbar to monitor
reach.

The special TestManager ME version was created only for ease of instruction
and is not further developed. The card is fully support the MEILHAUS In TestManager
CE contained and can be used directly.

Appendix

Appendix

System requirements

. Windows 7°, Vista®, XP°, 2000° oder N'T®
. Program directory on local drive

. Write-in access in the program directory

. Approx. 25 MB free hard disk

° 32 MB RAM

o VGA screen (640x480 Pixels)

. Pentium ° PC or compatible
. Installed hardware dependant on equipment
. Optional: installed network

o Optional: installed Borland Database Engine (BDE)

These values are minimum specifications; the computer can of course be better equip-
ped. The program itself sets no files outside of its program directory. One exception

is files in paths which are specifically stated (e.g. for measured value storage on the
network).

The program can also be started on regular (office) PCs, if the access to the unavailable
hardware in the program settings is switched off.

The program supports Windows XP style when enabled in the operating system and
when the Help is activated on the desktop page of the default setting.

Useful Web Links for TestManager Users

www.mcd-elektronik.com MCD Elektronics website.
Information about TestManager CE,
downloading the demo version, as well as
the tutorial.

www.meilhaus.com Distributor of cards and associated
measurement technology products.

93

	TestManager_ENG Cover einzeln
	TestManager_ENGJULI2014 ohne Anschnitt

